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Atomic layer deposition (ALD)

ALD is a method for thin-film deposition 

with atomic precision.

Volatile gas phase precursors allow 

lower reaction temperatures.

Precursors are introduced sequentially 

and are self-limiting.

Molybdenum disulfide (MoS2)

2D-MoS2 is a semiconductor with a 

direct band gap of 1.8 eV [2].

Applications in microelectronics, 

photovoltaics, and batteries [2].

Deposited via ALD with molybdenum 

hexafluoride (MoF6) and hydrogen 

sulfide (H2S) precursors [1]. 

Challenges with ALD of MoS2

Difficult to study in situ.

Relatively new and unknown chemistry.

MoF6-substrate interactions are 

unknown.

Project Goals

Understand role of hydroxyl groups (OH) on 

Al2O3, Si2N2O, and TiO2 substrates with a single 

MoF6 precursor.

Explain bonding and reduction mechanisms 

during first MoF6 half-cycle.

Density functional theory (DFT)

DFT is a first-principles computational modeling 

method (based on quantum mechanics rather 

than classical mechanics or empirical data).

Calculates ground-state properties of a system.

Less than 1,000 atoms in DFT modeled systems 

[3].

We used the Vienna Ab initio Simulation 

Package (VASP) to implement DFT [4].

Bader charge analysis

Bader charge analysis creates Bader volumes 

from “zero-flux surfaces” around each atom [5].

Using VASP output, it can determine the valence 

electron density within each Bader volume.

Quantifies donation or acceptance of electron 

density for each atom in a system.

Atom #

Initial valence 

electrons

Bader 

charge

Δ valence 

electrons

Al11 3 0.56 -2.44

Observation:

OH groups increase the Mo atom’s 

local electron density indirectly.

How?

OH groups break Al-O bonds.

Bader charge analysis of MoF6 on hydroxylated Al2O3

A single MoF6 was placed on Al2O3 surfaces at varying hydroxyl concentrations.

MoF6 on Al2O3 with 1 OH 

group: minimal electron 

localization (small Bader 

charge) corresponds to 

+6 oxidation state.

MoF4, 12 OHs: Large 

Bader charge corresponds 

to +4 oxidation state.

Top-down view of 

Al2O3 surface with 1 

OH. Surface Al atoms 

outlined. MoF6

omitted for clarity.

Same surface with 

12 OH. Dashed 

lines represent Al-O 

bonds broken by 

OH.

Si2N2O and TiO2 surface models

A change in the oxidation state 

of Mo from +6 to +5, +4, and 

+3 is evident by increased local 

electron density [6].

This frees up Al electrons so they 

can form Al-F bonds.

Results in separation of F atoms 

from MoF6.

Electrons from broken Mo-F bonds 

then localize to the Mo atom.

Legend

Above: Transmission electron microscope images of 

MoS2 deposited on Al2O3 by ALD [1].

Below: Model of a single MoF6 on hydroxylated Al2O3

(left) and Si2N2O (right) surfaces.

MoF6 on hydroxylated Al2O3

Reducing Mo to an oxidation state of +4 may increase reaction favorability. 

• We predict that the oxidation state of Mo in the product, MoS2, is +4.

• However, the oxidation state of Mo in MoF6 is +6.

• Similar molybdenum sulfide reactions are proposed to be most energetically 

favorable when Mo does not change oxidation state during the reaction [1].

Mo-O bonds were not observed on OH groups, so more OH fewer Mo-O bonds.

• Mo-O bonds are known to form in experiment [1].

• Minimizing these bonds could make the film/substrate boundary cleaner.

Si2N2O and TiO2 substrates

On (110) and (111) Si2N2O, hydroxylation increases partial charge density of O 

atoms.

• However, on (100) Si2N2O, hydroxylation decreases O atom partial charge density.

Investigation of TiO2 surfaces’ partial charge densities is in progress.

• Initial results show that hydroxyls affect these partial charge densities as well.

Conclusions

Based on our analysis, we predict increased reaction favorability and cleaner 

film/oxide interfaces by maximizing OH concentration because:

• OH groups break Al-O bonds on the Al2O3 surface and reduce the oxidation state 

of a deposited Mo atom.

• OH groups hinder Mo-O interactions.

Hydroxylation changes Si2N2O and TiO2 surface O chemistry in different ways 

depending on the surface: (100), (110), or (111).

Future work

Determine if surface decomposition of Al2O3 has any effects on material properties.

Bader charge analysis of two or more MoF6 molecules on Al2O3.

• Preliminary results indicate that surface chemistry may vary with more MoF6.

Add H2S to various MoFx species and calculate reaction energy.

• This will provide insight on the relation between oxidation states and reaction 

energy.

Simulate ALD of MoS2 on Si2N2O and TiO2 surfaces.

• Investigate the mechanism by which hydroxylation increases O partial charge on 

some structures but decreases it on others.
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Surface formation energies of non-

hydroxylated TiO2 and Si2N2O 

surfaces cleaved from bulk at various 

Miller indices: (100), (110), and (111).

Partial charge densities of Si2N2O 110 (left) and TiO2 110 (right) surfaces, 

fully hydroxylated.
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Above: Flow of DFT calculations [3].

Below: Example of Bader charge analysis.


