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ABSTRACT  
Knowledge about the stochastic nature of heterogeneity in subsurface hydraulic prop-
erties is critical for aquifer characterization and the corresponding prediction of 
groundwater flow and contaminant transport. Whereas the vertical correlation struc-
ture of the heterogeneity is often well constrained by borehole information, the lateral 
correlation structure is generally unknown because the spacing between boreholes is 
too large to allow for its meaningful inference. There is, however, evidence to sug-
gest that information on the lateral correlation structure may be extracted from the 
correlation statistics of the subsurface reflectivity structure imaged by surface-based 
ground-penetrating radar measurements. To date, case studies involving this approach 
have been limited to 2D profiles acquired at a single antenna centre frequency in areas 
with limited complementary information. As a result, the practical reliability of this 
methodology has been difficult to assess. Here, we extend previous work to 3D and 
consider reflection ground-penetrating radar data acquired using two antenna centre 
frequencies at the extensively explored and well-constrained Boise Hydrogeophysical 
Research Site. We find that the results obtained using the two ground-penetrating 
radar frequencies are consistent with each other, as well as with information from 
a number of other studies at the Boise Hydrogeophysical Research Site. In addition, 
contrary to previous 2D work, our results indicate that the surface-based reflection 
ground-penetrating radar data are not only sensitive to the aspect ratio of the under-
lying heterogeneity, but also, albeit to a lesser extent, to the so-called Hurst number, 
which is a key parameter characterizing the local variability of the fine-scale structure. 

Key words: Aspect ratio, Aquifer heterogeneity, Ground-penetrating radar, Hurst 
number, Lateral correlation structure, Monte Carlo inversion, Water content. 

1  INTRODUCT I ON  

An important objective in many hydrogeological studies is the 
characterization of subsurface heterogeneity within an aquifer 
for the subsequent prediction of groundwater flow and con-
taminant transport (e.g. Sudicky 1986; Mas-Pla et al. 1992; 

∗E-mail: james.irving@unil.ch 

Phanikumar et al. 2005; Salamon, Fern` andez-Garcia and 
G ´ omez-Hern´ andez 2007; Hu et al. 2009; Radu et al. 2011). 
Typical hydrogeological characterization methods have sig-
nificant limitations in this regard, as there exists a wide 
gap in terms of spatial coverage and resolution between lo-
cal borehole-based studies and larger-scale aquifer tests (e.g. 
Sudicky 1986; Kobr, Mareˇ s and Paillet 2005; Leven and 
Dietrich 2006). This gap can, at least, be partially bridged 
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through specifically targeted geophysical measurements (e.g. 
Rubin and Hubbard 2006; Hubbard and Linde 2010). In this 
regard, recent evidence suggests that high-resolution surface-
based reflection ground-penetrating radar (GPR) data may of-
fer important information on subsurface geostatistical proper-
ties (e.g. Rea and Knight 1998; Gloaguen et al. 2001; Tronicke 
et al. 2002; Kowalsky et al. 2005; Rubin and Hubbard 2006). 
This comes as a result of the close relationship that exists 
between soil water content and the high-frequency electro-
magnetic wave velocity (e.g. Greaves et al. 1996; Van Over-
meeren, Sariowan and Gehrels 1997; Al Hagrey and M ¨ uller
2000; Huisman et al. 2003). 

Whereas the vertical correlation structure of subsurface 
heterogeneity within an aquifer is often well constrained by 
borehole information (e.g. Ritzi et al. 1994), the lateral cor-
relation structure tends to be largely unknown because the 
boreholes are generally too sparse for its reliable inference. 
To date, several attempts have been made to relate the lat-
eral correlation statistics of surface-based reflection GPR data 
to those of the investigated subsurface region (e.g. Rea and 
Knight 1998; Oldenborger, Knoll and Barrash 2004; Knight, 
Tercier and Irving 2004; Dafflon, Tronicke and Holliger 
2005; Knight et al. 2007; Irving, Knight and Holliger 2009; 
Irving and Holliger 2010; Irving, Scholer and Holliger 2010). 
Rea and Knight (1998) compared the correlation structure of 
an outcrop image with that of the corresponding GPR data 
and found good overall agreement. Oldenborger et al. (2004) 
demonstrated that the geostatistical characteristics of GPR re-
flection data are quite robust to the effects of data processing 
including gain functions and migration, but noted that they 
will not be identical to those of the underlying porosity dis-
tribution because they are strongly influenced by the choice 
of the antenna frequency. Dafflon et al. (2005) complemented 
and extended the work of Rea and Knight (1998) and consid-
ered a realistic and highly versatile autocorrelation model to 
describe the subsurface heterogeneity. Knight et al. (2007) ob-
served similarities between the horizontal correlation statistics 
of GPR reflection data and those of closely spaced neutron-
probe water-content measurements, but pointed to the results 
of previous work demonstrating that the lateral correlation 
structure of a GPR reflection image will be strongly influenced 
by the vertical measurement resolution, which in turn is con-
trolled by the antenna centre frequency (Knight et al. 2004). 

Irving et al. (2009) were the first to present a physically 
and mathematically consistent model relating the 2D spatial 
autocorrelation of the subsurface water-content distribution 
to that of the corresponding GPR data, taking into account 
the effects of antenna frequency. Based on this model, they 

proposed a Bayesian Markov chain Monte Carlo (MCMC) 
inversion approach to estimate the subsurface horizontal cor-
relation statistics from the GPR reflection data. They found 
that unique recovery of the lateral correlation structure is de-
pendent upon accurate knowledge of the vertical correlation 
structure. This finding was subsequently demonstrated mathe-
matically by Irving and Holliger (2010). The developed inver-
sion methodology was successfully applied to both synthetic 
and field GPR measurements, as well as to synthetic seismic 
reflection data (Irving et al. 2010; Scholer, Irving and Hol-
liger 2010). However, all work so far has been limited to 2D 
profiles acquired at a single source frequency in areas where 
limited complementary information has been available. As a 
result, the practical reliability of this approach remains diffi-
cult to assess. 

In this paper, we seek to address the above limitations 
by extending the approach of Irving et al. (2009) from 2D 
to 3D and by considering a pertinent case study involving 
the use of multiple GPR antenna centre frequencies at a well-
characterized hydrogeophysical test site. We begin by describ-
ing the relationship between the 3D spatial autocorrelation 
of the high-frequency subsurface electromagnetic wave veloc-
ity distribution and that of the corresponding depth-migrated 
GPR reflection image. Next, we outline how we estimate the 
parameters describing the considered subsurface autocorrela-
tion model from the GPR data using a Monte Carlo inversion 
strategy. Finally, we demonstrate the successful application of 
this methodology to 3D GPR field data acquired using 100-
and 200-MHz antennas at the Boise Hydrogeophysical Re-
search Site (BHRS), Idaho, USA. 

2  METHODOLOGY  

2.1 Von K´ arm´ an autocorrelation function 

Seismic and radar wave velocity heterogeneities in the subsur-
face are commonly characterized as a superposition of a slowly 
varying or constant deterministic background velocity model 
and a stochastic velocity perturbation field (e.g. Gibson 1991; 
Holliger, Carbonell and Levander 1992). Following this as-
sumption, the 3D subsurface high-frequency electromagnetic 
velocity field can be written as 

v (x, y, z) = v0 (x, y, z) + v (x, y, z) , (1) 

where v0(x, y, z) is the background velocity field and 
v(x, y, z) represents the stochastic perturbation, the latter 
of which we assume to be zero-mean and, to a first approxi-
mation, multi-Gaussian distributed (e.g. Holliger 1996), and 
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whose parametric spatial correlation properties we wish to 
estimate. To this end, we consider the von K´ arm´ an spatial au-
tocorrelation function, which has been widely used to describe 
subsurface spatial variability in both borehole data analysis 
(e.g. Dolan and Bean 1997; Jones and Holliger 1997) and 
numerical simulations of wave-propagation phenomena (e.g. 
Frankel and Clayton 1986; Hartzell, Harmsen and Frankel 
2010). The 3D form of the von K´ arm´ an autocorrelation equa-
tion for anisotropic velocity heterogeneity aligned along arbi-
trary orthogonal coordinate axes x , y, and  z can be written 
as (e.g. Goff and Jordan, 1988) 

R vv 

 
δx , δy , δz  = 

r ν K ν (r ) 
2ν−1 K ν  ν (0) 

(2) 

where δx , δy and δz are the spatial autocorrelation lags 
in the x - ,  y - and  z - directions, respectively, Kν(r ) is the  
modified Bessel function of the second kind of order 0 ≤ ν ≤ 

1,  is the gamma function and 

r = 

  
δx 

a x 

2 

+ 

 
δy 

a y 

2 

+ 

 
δz 

a z 

2 

(3) 

is a normalized lag parameter with ax , ay and az denoting 
the spatial correlation lengths along x , y and z , respectively. 
Equation (2) defines an anisotropic heterogeneous medium 
showing self-similar or fractal behaviour at scales shorter than 
the correlation lengths. The parameter ν, which is generally 
referred to as the Hurst number, determines the decay rate 
of the autocorrelation function at near-zero lag values and, 
as such, characterizes the local variability of the considered 
stochastic medium. Values of ν close to zero and one are 
indicative of locally highly variable and locally very smooth 
media, respectively. A ν-value of 0.5, on the other hand, cor-
responds to a so-called Brownian stochastic process described 
by the well-known exponential autocorrelation function. 

In general, x , y and z in Eqs. (2) and (3), which corre-
spond to the principal axes of anisotropy of the subsurface ve-
locity heterogeneity, will not be aligned with the local x, y and 
z coordinate axes that typically reflect the ground-penetrating 
radar (GPR) data acquisition geometry. In other words, it is 
rarely the case that the ellipsoid describing the velocity hetero-
geneity will have principal axes that are consistent with the 
3D GPR data set upon which the local coordinate axes are 
typically defined. As a result, an orthogonal transformation is 
needed to use Eqs. (2) and (3) in the local x, y and z coordinate 
system. This transformation is described by ⎡ 

⎢⎣ 

x 

y 

z 

⎤ 

⎥⎦ = 

⎡ 

⎢⎣ 

| | |  

T1 T2 T3 

| | |  

⎤ 

⎥⎦ 

⎡ 

⎢⎣ 

x 

y 

z 

⎤ 

⎥⎦ , (4) 

where the column vectors T1, T2 and T3 of the orthogonal 
transformation matrix T are obtained by expressing unit vec-
tors in the x-, y-, and z-directions in terms of the coordinates 
x , y and z , respectively (e.g. Roman, Axler and Gehring 
2005). To estimate the directions of predominant velocity 
anisotropy in our work, which are required for the inver-
sion procedure described in Section 2.3, we use the dominant 
dip angles observed in the reflection GPR data as well as the 
corresponding 3D data autocorrelation. More details on how 
this is done are given in Section 3.2, where we apply our ap-
proach to the Boise Hydrogeophysical Research Site (BHRS) 
field data sets. 

2.2 Forward model 

To relate the stochastic properties of a depth-migrated 3D 
GPR reflection image to those of the underlying high-
frequency electromagnetic wave velocity distribution, we ex-
tend the method of Irving et al. (2009) from 2D to 3D. 
To this end, we consider a modified version of the primary 
reflectivity section (PRS) model (e.g. Gibson 1991; Pullam-
manappallil, Levander and Larkin 1997) where the 3D GPR 
image, d(x, y, z), can be expressed as the convolution of a 
source wavelet, w(z), the subsurface reflectivity coefficient 
field, r (x, y, z), and a 2D horizontal-resolution filter, h(x, y). 
As the distribution of reflection coefficients in the subsurface 
can be approximated by the vertical spatial derivative of the 
velocity field, v(x, y, z), this leads to 

d (x, y, z) ≈ w (z) ∗ r (x, y, z) ∗ h (x, y) 

≈ w(z) ∗ 
∂ 

∂z 
v (x, y, z) ∗ h (x, y) , (5) 

where the asterisk denotes the convolution operator. It is im-
portant to note that the modified PRS model described by 
Eq. (5) assumes that: (i) single scattering predominates, which 
is a basic assumption inherent to most seismic and GPR pro-
cessing, imaging and interpretation strategies (e.g. Aki and 
Chouet 1975; Sato 1977); (ii) dispersion in the GPR data can 
be ignored such that a constant wavelet shape can be approx-
imately assumed; and (iii) the data have been properly depth 
migrated. Under these conditions, Eq. (5) will capture the es-
sential features of a 3D GPR reflection image. 

The operator h(x, y) in Eq. (5) is required to account for 
the limited lateral resolution of a migrated reflection image 
(e.g. Berkhout, 1984). Following Irving et al. (2009), we use 
a Gaussian low-pass filter for this purpose 

h (x, y) = exp 
 

− 
x2 + y2 

2c2 

 

, (6) 
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where c determines the filter width and is set such that the 
diameter of the filter function where h reaches 1% of its max-
imum value is equal to the dominant wavelength of the GPR 
pulse. 

Noting that the vertical derivative operator in Eq. (5) can 
be treated as a filter whose position in the equation can be 
shifted to act on the wavelet, we can write the equation as 

d (x, y, z) ≈ v (x, y, z) ∗ f (x, y, z) , (7) 

where 

f (x, y, z) ≈ 
∂ 

∂z 
w (z) ∗ h (x, y) . (8) 

Transforming Eq. (7) into the frequency domain and tak-
ing the squared magnitude of both sides, we obtain a relation-
ship between the 3D power spectra of all quantities 

D 
 
kx, ky, k z 

 2 ≈ V 
 
kx, ky, k z 

 2 
F 

 
kx, ky, k z 

 2 
, (9)

where kx, ky and kz are the spatial wavenumbers in the x-, 
y- and  z- directions, respectively. Taking the inverse Fourier 
transform and making use of the Wiener–Khintchine theorem 
linking the power spectra with the autocorrelation functions 
then yields 

Rdd (δx, δy, δz) ≈ R vv (δx, δy, δz) ∗ Rf f  (δx, δy, δz) , (10) 

where δx, δy and δz denote the spatial autocorrelation lags 
along x, y and z. 

Equation (10) states that the 3D spatial autocorrelation 
of a depth-migrated GPR reflection image, Rdd(δx, δy, δz), 
will be approximately equal to the 3D convolution of 
the autocorrelation of the underlying subsurface veloc-
ity field, Rvv(δx, δy, δz), and that of the filtered source 
wavelet, Rf f  (δx, δy, δz). This means that, with knowledge of 
Rf f  (δx, δy, δz), we can estimate the parameters of the von 
K´ arm´ an autocorrelation function describing Rvv(δx, δy, δz) 
given Rdd(δx, δy, δz). Similar to our previous work involv-
ing 2D data (Irving et al. 2009, 2010), we can obtain the 
autocorrelation of w(z) from  Rdd(0, 0, δz), which is the av-
erage vertical autocorrelation of the migrated GPR image. 
Thus, Rf f  (δx, δy, δz) can be calculated through 3D convolu-
tion of Rdd(0, 0, δz) with the autocorrelation of the horizontal-
resolution filter, h(x, y), and that of a finite-difference vertical 
derivative operator. 

2.3 Inversion strategy 

Given knowledge of Rf f  (δx, δy, δz) and  Rdd(δx, δy, δz), which 
are both computed from the 3D GPR image, we wish to es-
timate the parameters governing Rvv(δx, δy, δz) using the for-

ward model given by Eq. (10). Specifically, our aim is to re-
cover information on the correlation lengths, ax , ay , az as 
well as on the Hurst number ν, which together parameterize 
the velocity heterogeneity described by the von K´ arm´ an auto-
correlation model through Eqs. (2) and (3). As this represents 
a low-dimensional but strongly non-linear inverse problem, 
we employ a brute-force Monte Carlo approach, which is 
consistent with the work of Irving et al. (2010) and Scholer 
et al. (2010). Although the original Bayesian Markov chain 
Monte Carlo (MCMC) inversion methodology presented by 
Irving et al. (2009) allows, in theory, for the quantification 
of posterior uncertainties of the estimated model parameters, 
it relies upon accurate statistical characterization of the resid-
uals between the observed GPR image autocorrelation and 
that calculated using Eq. (10), which in general are not well 
known. A Monte Carlo approach avoids these limitations and 
allows for great flexibility with regard to the criteria upon 
which parameter sets are accepted, albeit with the caveat that 
the corresponding inversion results do not represent samples 
from a Bayesian posterior distribution. 

To carry out an inversion using Eq. (10), we require a 
metric of acceptable fit between the predicted autocorrela-
tion of a 3D GPR image based on a particular test set of von 
K ´ arm´ an parameters, which we denote as Rpred 

dd(δx, δy, δz), and
the observed GPR image autocorrelation, which we denote us-
ing Robs 

dd (δx, δy, δz). In previous 2D work, Irving et al. (2009, 
2010) and Scholer et al. (2010) found that considering only 
the fit in the lateral direction was sufficient for this purpose, 
as the vertical correlation structure of a GPR reflection image 
is largely controlled by the source pulse. Similarly, for our 3D 
investigation, we have found that if the fit to the observed 
autocorrelation data in the δz = 0 plane (i.e. Robs 

dd (δx, δy, 0)) 
is adequate, then, in general, we will have an adequate fit to 
the entire 3D GPR image autocorrelation. We therefore pre-
scribe fitting bounds around Robs 

dd (δx, δy, 0) within which ac-
ceptable lateral autocorrelation data predicted using Eq. (10) 
(i.e. Rpred

dd (δx, δy, 0)) must lie (e.g. Irving et al. 2010; Scholer 
et al. 2010). In this regard, we define the maximum absolute 
fitting error 

ξ = max 
 

Rpred 
dd (δx, δy, 0) − Robs 

dd (δx, δy, 0) 
 

, (11) 

where Rpred 
dd and Robs 

dd are considered to be normalized to a 
maximum value of one. Test sets of von K´ arm´ an model pa-
rameters that are deemed acceptable in the inversion proce-
dure must have a ξ -value less than or equal to some user-
prescribed threshold. In this way, our inversion approach is 
similar to the generalized likelihood uncertainty estimation 
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technique (Beven and Binley 1992), whereby “behavioural” 
sets of model parameters are identified within a Monte Carlo 
framework based on whether the corresponding predicted 
data fall within specified bounds. 

Our Monte Carlo inversion strategy for estimating ax , 
ay , az and ν from the observed 3D GPR image autocorrelation 
is summarized by the following steps: 

1. Select the appropriate region of the depth-migrated 3D 
GPR image for analysis, and estimate the principal axes of 
the ellipsoid describing the subsurface velocity heterogeneity, 
x , y, and  z . More details on how this is accomplished are 
provided in Section 3.2. 
2. Calculate the observed 3D autocorrelation of the GPR re-
flection image, Robs 

dd (δx, δy, δz), and use the vertical compo-
nent, Robs 

dd (0, 0, δz), to compute Rf f  (δx, δy, δz) by convolving 
it with the autocorrelation of h(x, y) in Eq. (6) and that of a 
finite-difference vertical derivative operator. 
3. Define uniform prior ranges for the von K´ arm´ an model 
parameters describing the velocity heterogeneity, ax , ay , az 

and ν. 
4. Choose a maximum permissible value, ξ ∗ , for the fitting 
error given by Eq. (11). This defines what we deem to be an 
acceptable fit between the predicted and observed 3D GPR 
image autocorrelations. 
5. Randomly draw a proposed set of values for ax , ay , az and 
ν from the prior distributions defined in Step 3 and compute 
Rvv(δx, δy, δz) using Eqs (2) and (3). 
6. Calculate the corresponding predicted GPR image autocor-
relation, Rpred

dd (δx, δy, δz), using Eq. (10) with Rvv(δx, δy, δz) 
from Step 5 and Rf f  (δx, δy, δz) from Step 2.  
7. Calculate ξ using Eq. (12). If ξ < ξ ∗ , then the proposed set 
of von K´ arm´ an model parameters is accepted. Otherwise, it is 
rejected. 
8. Return to Step 5 and repeat until the desired number 
of accepted sets of von K´ arm´ an model parameters has been 
obtained. 

It is important to note that since each accepted set of 
von K´ arm´ an model parameters is generated independently 
with our methodology (i.e. not depending on the previous 
parameter set values), a parallel computational strategy can 
be adapted in order to generate stochastic realizations more 
efficiently. That is, Steps 5 to 8 in our inversion workflow can 
be assigned to different processors on a cluster-type computer. 
Compared with the MCMC inversion approach of Irving et al. 

(2009), this is a notable advantage. 

3  APPL ICATION  TO  F IELD  DATA  

3.1 Site description 

We now show the application of the previously described 
3D inversion methodology to field ground-penetrating radar 
(GPR) reflection data acquired at the Boise Hydrogeophysi-
cal Research Site (BHRS) using two different antenna centre 
frequencies. The BHRS is a research site located on a gravel 
bar adjacent to the Boise River, 15 km from downtown 
Boise, Idaho, USA (Fig. 1a). It contains 13 boreholes in a cen-
tral area, which has a diameter of 20 m, and five boreholes 
near its borders located at distances of 10 to 35 m from 
this central area. The underlying braided-river aquifer con-
sists of late Quaternary fluvial deposits dominated by coarse 
cobbles and sand. These are followed by a layer of red clay, 
which is situated at 20-m depth. Over the past two decades, 
the site has been extensively used for the testing, validation 
and improvement of a wide variety of geophysical and hydro-
geological methods for characterizing heterogeneous aquifers 
(e.g. Barrash and Clemo 2002; Tronicke et al. 2004; Bradford, 
Clement, and Barrash 2009; Nichols, Mikesell and Van Wijk 
2010; Dafflon, Irving and Barrash 2011; Dafflon and Barrash 
2012; Cardiff et al. 2013; Hochstetler et al. 2016). 

3.2 Database 

The 3D GPR reflection data considered in our study were ac-
quired during the summer of 1998 using a PulseEkko Pro 100 
system (Sensors & Software Inc.) with nominal antenna cen-
tre frequencies of 100 and 200 MHz. The 100- and 200-MHz 
data were collected in common-offset mode using transmitter– 
receiver antenna spacings of 1 and 0.5 m, respectively. The 
GPR survey grid had dimensions of 30 m in the in-line (x) 
direction and 18 m in the cross-line (y) direction (Fig. 1b). 
Traces were recorded every 0.1 m along each survey line, with 
a line spacing of 0.2 m. A time sampling interval of 0.8 ns was 
used and recordings were made over 400 ns. Note that the 
corresponding Nyquist frequency of 625 MHz is well beyond 
the maximum emitted frequency of the 200-MHz antennas, 
which is believed to be no greater than 450 MHz. For each 
recorded trace, 32 stacks were performed in order to improve 
the signal-to-noise ratio of the data. 

Processing of the GPR data consisted of band-pass filter-
ing between 25 and 450 MHz, automatic gain control with a 
large time window of 50 ns, and constant-velocity 3D migra-
tion (e.g. Stolt 1978) using a velocity of 0.08 m/ns determined 
from the analysis of common-mid-point measurements. In the 
resulting GPR images, the depth sampling interval is 0.037 m. 
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Figure 1 (a) Location of the BHRS with boreholes indicated by red dots and the position of the considered 3D GPR survey outlined in red. 
Modified after Bradford et al. (2009). (b) Zoomed-in view of the 3D GPR survey grid along with the well positions. 

Although, in theory, a spatially variable velocity field is 
required to obtain the most accurate subsurface image through 
migration, extensive testing on synthetic data has indicated 
that constant-velocity migration with the average prevail-
ing velocity is perfectly adequate for the kind of stochastic 
analysis considered in this paper, most notably in the pres-
ence of velocity heterogeneities comparable with those ob-
served at the BHRS (e.g. Bradford et al. 2009; Irving et al. 

2009, 2010). Further, Oldenborger et al. (2004) found that 
the spatial autocorrelation of a reflection GPR image is rel-
atively insensitive to the details of the data processing and 
migration. 

Figures 2(a) and 2(b) show the processed 100- and 
200-MHz GPR images from 0- to 10-m depth, respectively. 
The horizontal reflector at 2.5 m depth is the water table. 
Note that similarities can be seen in the two images in terms of 
the response to dominant reflecting interfaces in the subsur-
face. However, the 200-MHz data appear to be laterally more 
heterogeneous than their 100-MHz counterparts. The main 
reason for this phenomenon is that non-specular reflectors, 
which may effectively ‘line up’ laterally when imaged using 
lower-frequency antennas, can become discontinuous when 
imaged using higher-frequency antennas (Irving et al. 2009; 
Scholer et al. 2010). 

To estimate the principal axes of the ellipsoid describ-
ing the subsurface velocity heterogeneity at the BHRS, we 
consider the higher-resolution 200-MHz measurements, but 
comparable results are obtained for the 100-MHz data. Care-
ful analysis of the data in Fig. 2(b) indicates that the domi-
nant dip of the sediments is roughly 8 degrees with respect to 
the horizontal. Taking the cross product of the vectors repre-
senting the intersection of this dipping plane with the x = 0 

and y = 0 planes yields one of the principal axes of the het-
erogeneity, which is perpendicular to the predominant dip of 
the sedimentary layering. Next, we calculate the 3D auto-
correlation of the GPR image (Fig. 3a). Examination of this 
autocorrelation through the origin along the previously cal-
culated dipping plane yields an ellipse whose major axis cor-
responds to another one of the principal directions (Fig. 3b). 
Finally, the third principal direction is found by taking the 
cross product of the two previously determined ones, making 
sure that the resulting vector forms a right-handed coordinate 
system with the others. This direction corresponds to the mi-
nor axis of the ellipse along the dipping plane (Fig. 3c). For 
the BHRS data, the above analysis yielded the following unit 
vectors ˆ x , ŷ and ẑ along the x - ,  y - and  z - directions, 
respectively: 

x̂ = 

⎡ 

⎢⎣ 

0.9612 

0.2452 

−0.1264 

⎤ 

⎥⎦, ŷ = 

⎡ 

⎢⎣ 

−0.2530 

0.9662 

−0.0496 

⎤ 

⎥⎦, ẑ = 

⎡ 

⎢⎣ 

0.1100 

0.0797 

0.9907 

⎤ 

⎥⎦ . (12) 

We see that these vectors are close, but not identical, to 
those defining a standard Cartesian coordinate system aligned 
with the GPR survey grid. 

3.3 Inversion procedure 

For all of the inversion results presented in this paper, we 
consider a maximum fitting error of ξ ∗ = 0.12. This means 
that all sets of von K´ arm´ an parameters whose corresponding 
predicted GPR image autocorrelations were within a distance 
of 0.12 from the observed autocorrelation in the δz = 0 plane  
were accepted in the Monte Carlo inversion procedure. This 
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Figure 2 Processed and depth-migrated GPR data from the BHRS considered for analysis. The nominal antenna centre frequency is (a) 
100 MHz and (b) 200 MHz. 

choice, which is admittedly subjective and based on what we 
view to represent a ‘behavioural’ set of model parameters in 
terms of bounding the observations (Beven and Binley, 1992), 
is more visually intuitive and less problematic than other fit-
ting metrics based upon assumed knowledge regarding the 
statistical distribution of the data residuals (e.g. Irving et al. 

2009). In this context, it is again important to note that our 
inversion results cannot be regarded as samples from a formal 
Bayesian posterior distribution. 

For the inversions, we considered the 100- and 200-MHz 
GPR data over a restricted depth range from 2.5 to 8 m. The 
upper limit of this range corresponds to the position of the 
water table at the time the measurements were taken, whereas 
the lower limit represents the maximum depth of penetration 
of the 200-MHz data. In this way, the estimated geostatis-
tics of the high-frequency electromagnetic wave velocity at 
the BHRS correspond to saturated fluvial sediments. Given 
the quasi-linear relationship between water content and ve-
locity over a limited range (e.g. Irving et al. 2009), the cor-
responding results can therefore be interpreted in terms of 
porosity. In this regard, the prior range of acceptable val-
ues for the vertical correlation length az was set between 0.1 
and 2 m. This range was constrained by previous analyses 

of porosity log data along BHRS boreholes C5 and C6 as-
suming the same parametric autocorrelation model as the one 
used in this study (Dafflon, Irving and Holliger 2009). Simi-
larly, based on a comprehensive review of the fractal nature 
of rock physical properties in sedimentary rocks (Hardy and 
Beier 1994), the prior range for the Hurst number ν was set 
between 0.1 and 0.5. Based on the available evidence, ν-values 
larger than 0.5 are extremely unlikely in general (Hardy and 
Beier 1994) and particularly within the given context (e.g. 
Dafflon et al. 2009). Conversely, ν-values close to zero are 
realistic, but would render evaluation of the parametric au-
tocorrelation function given by Eq. (2) error-prone due to 
the singularity of the associated Bessel function. The prior 
ranges for the horizontal correlation lengths ax and ay , on the  
other hand, which cannot be reliably constrained by borehole 
measurements, were both set rather broadly between 0.1 and 
20 m. 

For each GPR data set, the previously described Monte 
Carlo inversion procedure was run until 2000 accepted sets 
of von K´ arm´ an autocorrelation model parameters were ob-
tained. Similar to previous work with 2D data (e.g. Irving 
et al. 2009, 2010; Irving and Holliger 2010), the 3D inversion 
cannot constrain uniquely the horizontal correlation lengths, 
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Figure 3 (a) 3D spatial autocorrelation of the 200-MHz GPR image from Fig. 2(b), calculated over a depth range of 2.5 to 8 m, which 
corresponds to saturated sediments. (b) Slice through the autocorrelation in (a) along the predominant dipping plane of the sediments. (c) View 
of the slice in (b) from above. The red and blue dotted lines represent the x- and  y-directions, respectively. 

but rather only the horizontal-to-vertical aspect ratios of the 
underlying heterogeneity. As a result, we present our results 
in terms of the aspect ratios ax /az and ay /az , along with the 
lateral aspect ratio ay /ax . 

3.4 Results 

Figures 4 and 5 present histograms of ax /az , ay /az , ay /ax 

and ν, which were obtained from the 100- and 200-MHz 
BHRS inversion results, respectively. The corresponding sum-
mary statistics are provided in Table 1. We see that our Monte 
Carlo inversion procedure has resulted in generally well-
defined, quasi-normal distributions for the three considered 
aspect ratios. The mean values for the horizontal-to-vertical 
aspect  ratio in the  x-direction, ax /az , are 6.3 and 5.7 for the 
100- and 200-MHz data, respectively, which are consistent 
(Figs 4a and 5a). The estimates of 13.1 and 10.2 for the 
horizontal-to-vertical aspect ratio in the y direction, ay /az , 
differ more significantly between the 100- and 200-MHz 
data (Figs 4b and 5b), but are still in good agreement given 
the corresponding standard deviations (Table 1). All of 
these values agree well with values inferred by Dafflon et al. 

(2009) from the analysis of porosity log data along boreholes 
C5 and C6, which are aligned at an oblique angle to our 
y’-direction, and corresponding crosshole tomographic GPR 

measurements. In that paper, a range of horizontal-to-vertical 
aspect ratios between 6 and 20 was considered to generate 
conditional stochastic realizations of porosity. The authors 
found that intermediate values in this range exhibited the best 
qualitative agreement with the corresponding full-waveform 
crosshole tomographic GPR image of Ernst et al. (2007), 
which is expected to have a resolution in the decimetre 
range. 

Our inferred values for ax /az and ay /az complement 
the work of Dafflon and Barrash (2012), who performed 3D 
stochastic simulations of the porosity structure of the BHRS 
constrained by all available porosity logs and crosshole GPR 
tomograms. The simulations were based on an exponential 
autocorrelation model, which was assumed to be laterally 
isotropic, that is ax = ay . Both the vertical and the lateral 
correlation lengths were estimated based on the analysis of 
the porosity logs. As pointed out earlier, and indeed confirmed 
by Dafflon and Barrash (2012), the comparatively large spac-
ings between the individual boreholes make this approach 
inherently prone to significant uncertainty with regard to the 
estimation of the lateral correlation lengths. This, in turn, 
finds its expression in a relatively wide range of horizontal-to-
vertical aspect ratios between 3 and 6 estimated by Dafflon 
and Barrash (2012), which is biased towards too low values 
compared the results of Dafflon et al. (2009) and Ernst et al. 
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Figure 4 Histograms of Monte Carlo inversion results obtained for the 100-MHz GPR data collected at the BHRS. 

(2007). The upper end of this range, which is preferred by 
Dafflon and Barrash (2012), is broadly compatible with our 
estimates. 

Regarding the horizontal aspect ratio ay /ax , which de-
scribes the degree of anisotropy in the velocity heterogene-
ity in the x - y plane, the mean inferred values from our 
analysis are 2.1 and 1.8 for the 100- and 200-MHz data, re-
spectively (Figs 4c and 5c). These values are consistent with 
the overall structure of the braided-stream deposits at the 
BHRS, for which the correlation length in the flow direc-
tion of the Boise River along the y-axis is known to be larger 
than that in the perpendicular direction. Indeed, core stud-
ies by Reboulet and Barrash (2003) from boreholes B1, B2 
and C2, which are along the y-direction (Fig. 1), revealed 
the presence of a larger sand channel at 6 to 7 m depth, 
whereas Bradford et al. (2009) found several smaller-scale 
channels or lenses in the x-direction through porosity log 
analyses. 

In contrast to the previous work of Scholer et al. (2010), 
our results suggest that the considered 3D GPR reflection data 
also exhibit some sensitivity to the Hurst number ν, which,  

as outlined earlier, characterizes the local variability of the 
velocity heterogeneity (Figs 4d and 5d). As the correspond-
ing histograms are distinctly asymmetric and dispersed, we 
consider the peak values of the distributions, which are 0.12 
and 0.18 for the 100- and 200-MHz data, respectively. Not 
only are these values reasonably consistent with one another, 
they are also in agreement with the value of 0.2 inferred by 
Dafflon et al. (2009) from porosity log measurements along 
boreholes C5 and C6, as well as the seemingly universal ob-
servation that the Hurst numbers of most rock physical prop-
erties in sedimentary environments are characterized by small 
ν-values regardless of the geological setting (e.g. Hardy and 
Beier 1994). 

Finally, one item of particular interest, which is somewhat 
counter-intuitive, is the increased standard deviation of the es-
timated aspect ratios for the 200-MHz data as compared with 
those for 100-MHz data (Table 1). While this phenomenon is 
not fully understood and remains a topic of current work, it is 
consistent with corresponding observations made by Scholer 
et al. (2010) for synthetic reflection seismic data simulated at 
different dominant source frequencies. 
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Figure 5 Histograms of Monte Carlo inversion results obtained for the 200-MHz GPR data collected at the BHRS. 

Table 1 Summary of the Monte Carlo inversion results obtained for 
the two collocated 3D GPR data sets from the BHRS, based on 2000 
output realizations. S.D. denotes the standard deviation 

ax /az ay /az ay /ax ν 

Data Mean S.D. Mean S.D. Mean S.D. Mean S.D. Peak 

100 MHz 6.25 0.90 13.11 1.70 2.13 0.37 0.15 0.04 0.12 
200 MHz 5.67 1.34 10.23 2.56 1.83 0.34 0.25 0.09 0.18 

4  CONCLUSIONS  

The main objective of this study was to implement and val-
idate a methodology for estimating the lateral correlation 
structure of an alluvial aquifer from surface-based 3D ground-
penetrating radar (GPR) reflection data. To this end, we 
have developed a relationship between the autocorrelation 
of the 3D GPR data and that of the probed subsurface high-
frequency electromagnetic velocity field, the latter of which is 
strongly related to soil water content. Based on this relation-
ship, we used a Monte Carlo inversion strategy to estimate 

the correlation structure of the subsurface water content dis-
tribution from 3D GPR data acquired at a particularly well-
characterized test site. By inverting two collocated 3D GPR 
data sets collected at nominal source frequencies of 100 and 
200 MHz, we obtain consistent information regarding the 
aspect ratios of the water content distribution, which are in 
agreement with independent and unrelated previous studies. 
In contrast to earlier related work, we also find that it is pos-
sible to constrain the Hurst number, which is a key parameter 
characterizing the complexity of the fine-scale sedimentary 
structure. 

As we consider data collected in the saturated zone, where 
water content is equivalent to porosity, our results can be di-
rectly compared with independent estimates of the correlation 
structure of porosity at the study site. Indeed, the detailed re-
sults of our work, notably the inferred spatial anisotropy and 
the spatial orientation of the corresponding principal axes 
x , y and z , should allow for substantial refinements in the 
conditional stochastic simulations of the 3D porosity struc-
ture at the Boise Hydrogeophysical Research Site (BHRS). 
This, in turn, points to the immense potential of the proposed 
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method in the context of detailed hydrogeophysical site 
characterizations. 

Our results demonstrate that the proposed technique 
provides an effective means of inferring the second-order 
stochastic properties of the water content in the shallow sub-
surface based on surface-based GPR alone and without the 
need of borehole information for calibration purposes. This 
information is essential for the successful 3D geostatistical 
interpolation and/or stochastic simulation of sparse borehole 
measurements of related key hydraulic properties, such as the 
hydraulic conductivity. 
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