
1. Background

2. Practical Applications

High-Performance Electronics

• Field effect transistors (FETs)

– Due to the presence of a band gap, many TMD compositions can be 

used as semi-conductors in the next-generation of FET technology. 

– TMDs have a high electron mobility when compared to Si.

• Flexible/wearable electronics 

– TMDs are relatively strong and flexible.

– Some compositions are semi-transparent. 

– These unique properties make TMDs very intriguing for use in flexible 

and wearable technology.

• Optoelectronics

• Energy storage

– TMDs  can also be used as the anode in lithium ion batteries
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3. TMD Heterostructures

• Lateral heterostructures

– Held together by strong covalent bonds

• Vertical heterostructures

– Held together by weak Van der Waals forces

Materials-by-Design

• The ability to mix-and-match different TMDs allows the creation of 

devices that can be designed to meet highly specific requirements for a 

task. 

Varying Concentration

• We have studied how the concentration of each material affects the 

properties of the system, as shown below. 

Varying the concentration of each material within a 

MX2-MX2 composition 

4. Methods
Density Functional Theory (DFT)

• DFT is an electron-density-dependent method.

– Ground-state properties of a many-body electron system are only a 

function of electron density.

• We used the Vienna Ab initio Simulation Package (VASP) to perform 

our DFT calculations. 

– Using DFT methods we could optimize TMD heterostructures and 

attain their formation energies. 

5. Preliminary Results

6. Conclusion/Future Work
• A thorough and proper data analysis is needed before we draw any solid 

conclusions. 

• In this study we focused on the formation energy and structural stability of 

MX2-MX2 compositions. Future studies will involve calculating the band 

gap as a function of composition. 

Acknowledgements

This work made use of the R2 cluster (DOI: 10.18122/B2S41H) provided by 

Boise State University’s Research Computing Department and was 

supported by the National Science Foundation via the REU Site: Materials 

for Society at Boise State University (DMR 1658076). In addition, I would 

like to thank Dr. Lan Li and Matthew Lawson for their guidance in many 

aspects of this research. 

`

• Over 500 MX2-MX2 formation 

energies were found using DFT 

calculations.

– The formation energies of 

these structures are all 

plotted in the figure to the 

left

– Analysis of data is a work 

in progress

• We isolate one of the X2

variables to understand how the 

choice of chalcogen effects the 

formation energy of the 

composition. 

• Preliminary data suggests that a 

greater abundance of Se 

correlates with a lower 

formation energy, followed by 

Te, and then finally S.

– The cause of this trend is 

currently unknown.
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Transition Metal Dichalcogenides 

(TMDs)

• Two-dimensional materials with improved 

properties when transitioning from bulk (3D) 

to monolayer (2D)

• Chemical formula of type MX2

= transition metal

= chalcogen 

• Many properties of TMDs are reminiscent of 

graphene

– Many TMD compositions have band 

gaps, but graphene has a zero band gap

Motivation

• Understanding how to tune the electronic 

band gap of TMDs

– Metal site doping

– Tensile and compressive forces

• Understanding interfacial thermal transport
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