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ABSTRACT 

Rivers and streams are the corridors of material transport from land to sea. Solutes and 

particles experience a range of environments as they traverse the river network, many of which 

are highly reactive, and reaction rates are localized to specific regions. The interfacial region 

between the river and its underlying sediments, or the hyporheic zone, is particularly reactive due 

to the diversity of chemical environments and the abundance of life in stream sediments.  

The overall transformation of reactive materials in streams and rivers is therefore closely 

linked to their transport to, and retention within, the hyporheic zone. However, hyporheic 

transport processes are difficult to elucidate because stream and rivers are highly heterogeneous. 

Transport mechanisms are not only active over a broad range of spatial and temporal scales in 

these systems, but they also co-vary. To accurately predict material movement in this 

environment, transport models must capture the full distribution of scales over which these 

processes are active, as well as the coupling between them. Such an effort requires detailed 

observations of the mechanisms that dominate hyporheic transport, many of which are difficult 

to measure within sediments.  

This dissertation is motivated by the need for parsimonious, mechanistic models describing 

solute and particle transport at the sediment-water interface. To this end, we combine 

experiments and modeling to advance understanding of several transport processes that have not 

been observed or incorporated into current modeling frameworks. Specifically, we study the role 

of turbulence in regulating hyporheic transport in coarse-grained streambeds (Chapters 2-3), the 
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controls of microbial biomass on fine particle transport (Chapter 4), and the reworking of 

interfacial sediments by the aquatic worm Lumbriculus variegatus (Chapter 5). Together, our 

findings advance understanding of interfacial solute and fine particle transport by providing 

novel observations of several physical processes that regulate interfacial dynamics, as well as 

strategies for how these processes can be incorporated into multi-scale transport modeling 

frameworks. 
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We don’t know what’s going on here. If these tremendous events are random 

combinations of matter run amok, the yield of millions of monkeys at millions of 

typewriters, then what is it in us, hammered out of those same typewriters, that 

they ignite? We don’t know. Our life is a faint tracing on the surface of mystery, 

like the idle, curved tunnels of leaf miners on the face of a leaf. We must 

somehow take a wider view, look at the whole landscape, really see it, and 

describe what’s going on here. Then we can at least wail the right question into 

the swaddling band of darkness, or, if it comes to that, choir the proper praise. 

from Pilgrim at Tinker Creek 

Annie Dillard 
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CHAPTER 1 

Introduction 
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Stream and river networks touch nearly all parts of continental landscapes, motivating 

scientists to quantify the intimate hydrologic connectedness between land and sea. The slow 

action of water balances tectonic uplift by chemically weakening and then eroding the surface of 

mountains [Leopold et al., 1964]. These eroded sediments join other solutes and organic matter 

as they move through a network of inland waters that eventually exit to the oceans [Anderson 

and Anderson, 2010].  

 
Figure 1.1. Contemporary estimates of global organic carbon fluxes (in Pg) to and from inland 

waters. Green arrow represents influx of terrestrial organic carbon into these waters.  Figure 

from Wehrli [2013], with values provided from Battin et al. [2009], Aufdenkampe et al. 

[2011], and Raymond et al. [2013]. 

Materials in rivers and streams pass through a wide range of physical and chemical 

environments that can result in their transformation or sequestration. For example, recent 
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continental-scale datasets of carbon fluxes show that only about 1/6th of terrestrially-derived 

organic carbon that enters inland waters ultimately reaches the oceans (0.9 Pg of 5.7 Pg, Figure 

1.1), and as much as 70% of these inputs exit as greenhouse gases within river networks [Battin 

et al., 2009; Aufdenkampe et al., 2011; Bastviken et al., 2011; Raymond et al., 2013; Wehrli, 

2013]. Transformations occur for a wide range of reactive constituents, many of which can 

adversely impact water quality both locally and downstream of their release [Diaz and 

Rosenberg, 2008; Rockstrom et al., 2009; Carpenter et al., 2011; Meter et al., 2016]. An 

understanding of how rivers and streams function is therefore an essential step for predicting the 

fate of reactive materials that enter them. 

1.1 Hyporheic exchange across the sediment-water interface 

Material transformation is highly localized in freshwater systems [McClain et al., 2003], with 

a large fraction of reactions occurring near the boundary between rivers and their underlying 

sediments, called the sediment-water interface (SWI). The zone at the SWI, commonly termed 

the benthic zone, is exposed to faster-flowing, well-mixed water in the stream. Just below the 

SWI is a region where stream and groundwaters interact regularly, called the hyporheic zone 

(Figure 1.3).   
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Figure 1.2. Schematic illustration of surface-subsurface interactions in a river. The benthic 

zone represents the region between a river’s water column and underlying sediments, i.e., the 

sediment-water interface. Interactions between surface waters and groundwaters are defined 

as hyporheic exchange, and the region where these interactions occur regularly is called the 

hyporheic zone. Interactions exist over a broad range of scales. Figure from Stonedahl et al. 

[2010].  

Higher transformation rates in the benthic and hyporheic zones can be attributed to both the 

abundance of life and the diversity of chemical environments found within them [Jones and 

Mulholland, 1999]. Sequestration and transformation of abiotic materials, such as stream-borne 

contaminants is favored in the hyporheic zone due to several factors: a transition from oxic to 

suboxic and anoxic conditions; sorption to sediments; and mixing with groundwater, which is 

chemically distinct from surface waters. Additionally, every square meter of streambed provides 

100-1000 m2 of habitable area for surface-attached microbial communities, a ‘microbial skin’ 
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that makes up the majority of microbial biomass in ecosystems [Battin et al., 2016]. These 

communities, called biofilms, drive chemical transformations as they metabolize organic carbon, 

assimilate nutrients (e.g., ammonium, phosphate) and utilize multiple electron acceptors (e.g., 

oxygen, nitrate) [Jones and Mulholland, 1999; Allan and Castillo, 2007]. Thus, the SWI is 

typically a region of high bioreactivity relative to the water column. 

 

Figure 1.3. (a) Simulated hyporheic flow and oxygen concentration under a bedform [Bardini 

et al., 2012b]. (b) Bacterial biofilms colonizing a lung epithelium (left) juxtaposed against a 

more complex benthic biofilm colonizing a sedimentary environment (right) [Battin et al., 

2007]. 

Delivery of reactive constituents (i.e., transport), as well as removal of reaction products, is 

necessary for sustained reactivity at the SWI. Additionally, materials require adequate residence 

time in reactive zones before they are transformed, and the balance between residence timescales 

and reaction timescales exerts primary control of integrated transformation rates [Zarnetske et 

al., 2011]. Water exchanged into the hyporheic zone experiences velocities many orders of 

magnitude slower than in surface waters. These slow velocities often give rise to retention 

b a 
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timescales that are similar to or much greater than reaction timescales, favoring transformation in 

the hyporheic zone [Harvey et al., 2013]. 

1.2 General challenges and approaches for predicting 

transformation at the SWI 

Overall transformation rates in freshwater systems are commonly measured at larger scales, 

for example, by releasing a reactive tracer at into a stream and measuring its concentration (or its 

reaction products) some distance downstream [Hauer and Lamberti, 2011]. Such a study may 

accurately quantify transformation of a given reactive constituent in a given system under 

specific flow conditions. However, the high localization of reactions to the SWI makes it 

difficult to relate measured transformation rate to specific system conditions (e.g., mean stream 

velocity) [Hall et al., 2002; Boano et al., 2014]. Predictive assessments of transformation 

therefore require knowledge of how changing system conditions will alter transport to the 

benthic and hyporheic zones. 

Laboratory experiments have proven extremely useful for understanding the physical drivers 

of hyporheic transport and reaction, thus elucidating the connection between observable 

properties (e.g., streamflow, bed permeability) and overall transformation. Experiments provide 

a controlled environment to study individual mechanisms that cannot be isolated in the field, as 

well as to use more sensitive instrumentation.  
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Because the processes at small-to-intermediate scales often dominate transformation in 

natural systems, any quantification of controlling mechanisms in the laboratory must be relatable 

to field conditions. We rely upon mathematical models to make this connection. Ideally, models 

should reasonably describe the mechanisms governing transport and reaction at the SWI, which 

is the definition for a physical or mechanistic model. Fidelity to controlling processes allows 

mechanistic models to be parameterized from measurable properties of the aquatic system (e.g., 

streambed porosity, permeability, roughness). As a result, mechanistic models are capable of 

predicting how the response variable will change as system properties change, either in the same 

system or in systems with different conditions. These models should also be parsimonious, 

meaning they describe the controlling process with as few parameters as possible.  

Development of hyporheic exchange models is severely limited both by available technology 

and by the high complexity of processes near the SWI. These limitations are often addressed 

through semi-empirical models or scaling laws. For example, the first widely-adopted model for 

hyporheic exchange was the Transient Storage Model (TSM) [Bencala and Walters, 1983]. The 

TSM conceptualizes the hyporheic zone as a perfectly-mixed reservoir that uniformly exchanges 

mass with a stream. This representation is an obvious departure from the physics governing 

surface-subsurface transport in real systems because groundwaters are far from well mixed. 

Despite this departure, the TSM adequately captures many features of solute injection 

experiments observed in stream surface waters [Harvey et al., 1996]. Nonetheless, the TSM’s 

simple formulation severely limits its predictive capability. Model fits change with the timescale 

of stream measurements [Zaramella et al., 2003], capture only a subset of all exchange processes 
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[Haggerty et al., 2000], and cannot be transferred between streams. Most semi-empirical models 

suffer from similar predictive shortcomings as the TSM [Boano et al., 2014]. A shift toward 

physically-based models is therefore essential if results from different stream conditions, or even 

observations in the same stream at different scales, are to be related.  

Heterogeneity at the SWI also creates challenges for process interpretation. Interactions 

between the streambed and streamflow create static and dynamic variability at the SWI 

[Packman and Brooks, 2001; Harvey et al., 2012; M Xie et al., 2016]. This variability occurs at 

difficult-to-measure scales, as well as over across a broad range of distances and times [Martin et 

al., 2012; Zhang et al., 2012; Aubeneau et al., 2015a]. For example, the permeability of 

hyporheic sediments can vary by as many as seven orders of magnitude in a single stream 

segment [Fogg and Zhang, 2016], and water traveling in the hyporheic zone will also experience 

velocities over this range of scales. How does one define a characteristic velocity in such a 

heterogeneous environment? A logical first step is to measure the mean displacement of a 

released tracer as it advects and spreads downstream. The mean velocity and other statistical 

properties (e.g., rate of spread) of the tracer are expected to change until all tracer mass has 

sampled all velocities present in the system, at which point they will transition to constant 

(characteristic) values [Metzler and Klafter, 2000; Zhang and Meerschaert, 2011]. The 

appropriate observation scale is therefore a time or distance beyond this transition. 

Unfortunately, measured subsurface velocity and other statistics often change over the entire 

observation period, meaning the appropriate measurement scale is larger than the system size 

[Gelhar et al., 1992; Aquino et al., 2015]. This poses a problem for biogeochemical models that 
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rely on a characteristic velocity to quantify the balance between reaction and transport timescales 

in subsurface sediments [Zarnetske et al., 2011; Harvey et al., 2013].  

An additional criterion for aquatic transport models in natural systems is therefore needed: 

they must describe how transport processes vary over a broad range of scales. A new class of 

“multiscale” models has gained popularity in the last two decades, owing to their ability to 

parsimoniously describe scale dependency in earth surface processes [Rodríguez-Iturbe and 

Rinaldo, 2001; Berkowitz et al., 2006; Meysman et al., 2008a; Schumer et al., 2009; Foufoula-

Georgiou and Stark, 2010]. These models, based on stochastic representations of the underlying 

transport process, will be discussed further in the following section. 

1.3 Specific transport mechanisms and knowledge gaps 

1.3.1 Turbulent hyporheic exchange 

Mass and heat are efficiently mixed within the stream water column by turbulence, but the 

role of turbulence in hyporheic transport remains unclear. The sharp transition from energetic 

surface flows to much slower subsurface flows is generally assumed to occur over a depth of 

only a few sediment grains [Boudreau and Jorgensen, 2001; Tonina and Buffington, 2007]. 

Recent studies have shown that microbial metabolism, substrate utilization, and habitat selection 

are all controlled by in-stream turbulence [Cardinale et al., 2002; Hondzo and Wang, 2002; 

Singer et al., 2010; Niederdorfer et al., 2016]. Given the high bioactivity at the SWI [Battin et 

al., 2016], these studies suggest that turbulence in the hyporheic zone plays an important role in 

stream ecology and biogeochemistry.  
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Most studies of hyporheic exchange apply the physically-based advective pumping model to 

predict solute concentrations observed in a stream’s surface waters (Figure 1.4). This model is 

capable of predicting the hyporheic flow field from measurements of streamflow, sediment 

permeability, and streambed topography when subsurface flows are governed by Darcy’s Law 

[Elliott and Brooks, 1997a; b; Packman, 1999]. A key performance metric for these models is 

their ability to predict in-stream solute concentrations at timescales slower than those related to 

in-stream mixing, since solute is retained in the hyporheic zone over a broad range of times. 

Recent laboratory experiments by Marion et al. [2008] and fieldwork by Stonedahl et al. [2012] 

showed that the model successfully described exchange at slow timescales (𝒪(1 h)), but 

substantial deviations between model predictions and observations were observed at intermediate 

times. That is, retention timescales shorter than those induced by streambed topography and 

longer than those related to in-stream mixing were not captured by the pumping model. Two 

processes have been hypothesized to influence solute transport over these timescale: surface 

storage zones, created by flow obstructions, [Ensign and Doyle, 2005], benthic biomass [Battin 

et al., 2003a; Orr et al., 2009], and side pools [Gooseff et al., 2005; Jackson et al., 2013]; and 

rapid hyporheic exchange due to flow around individual sediment grains or grain clusters and 

turbulence penetrating into the hyporheic zone [Nagaoka and Ohgaki, 1990; Packman et al., 

2004; Marion et al., 2008]. Parsing the contributions of these two zones is essential if nutrient 

dynamics at the scale of the river reach are to be predicted, due to the pronounced biological and 

chemical contrast of the surface and the subsurface [Jones and Mulholland, 1999].  
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Figure 1.4. Top: Pathline of tracer migration through a dune-shaped gravel bedform. 

Topography-driven flows are well represented by the advective pumping model, but do not 

explain hyporheic solute retention over the full range of observed timescales. Short- to 

intermediate- timescale advection associated with streambed roughness and turbulent 

exchange are not captured by the advective pumping model Figure from Tonina and 

Buffington [2009].  

Turbulent hyporheic exchange is expected to be more important and exert a greater influence 

over hyporheic transport in streams with coarser bed sediments. Measured hyporheic exchange 

rates for gravel- and cobble-bed streams can be orders of magnitude higher than can be explained 

by topography-induced advective flows or by molecular diffusion [C P Richardson and Parr, 

1988; Packman et al., 2004]. Empirical analyses show that these rates scale with bulk flow 

properties (e.g., Reynolds number) and with streambed properties (e.g., permeability) [Packman 

et al., 2004; O'Connor and Harvey, 2008], suggesting a relationship between the turbulent flow 

field in the water column and streambed. Flow coupling between the surface and subsurface, 

particularly at high Reynolds numbers, causes substantial deviations in friction factors, stream 

velocities, and in-stream turbulence compared to equivalent impermeable beds [Ruff and Gelhar, 

1972; Zagni and Smith, 1976; Manes et al., 2009; Blois et al., 2013]. These changes cannot be 
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explained by simply treating the stream simply driving Darcy flow in the underlying porous 

medium, as is assumed by the pumping model, and instead suggests that streams with a highly 

permeable substratum need to be analyzed as a flow continuum [Manes et al., 2011]. 

 

Figure 1.5. Conceptual profiles of velocity (red line) and vertical mixing (blue line) within a 

stream underlain by a coarse sediment bed. Dashed lines represent asymptotic values found 

deep within the bed. Figure adapted from Manes, et al. [2011]. 

A limited number of experimental studies show a direct correlation between streamflow and 

mass transport below the SWI [C P Richardson and Parr, 1988; Nagaoka and Ohgaki, 1990; 

Packman et al., 2004; Chandler et al., 2016]. Unification of these experimental findings first 

requires more detailed observations, below the SWI, at the spatial and temporal scales where 

turbulence is expected to control mass transport.   
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1.3.2 Upscaled measures of turbulent hyporheic exchange 

An important goal in fluvial transport research is the development of analytical models that 

describe downstream mass transport. Reduced-order (1-D) equations successfully capture the 

basic features of mass transport in rivers. For example, the classical advection-dispersion 

equation (ADE) captures has been widely applied to predict bulk transport in rivers [Elder, 1959; 

Fischer et al., 1979], but this model doesn’t capture the long-term mass retention that is 

generally seen in rivers (Figure 1.6). 

 
Figure 1.6. Fits of a transport model with a single storage zone with exponential residence 

time distribution (dashed lien) and the multiscale, multirate mass transfer model (solid line) to 

in-stream rhodamine concentrations. Figure from [Haggerty et al., 2002]. 

Advancements in tracer sensitivity showed that the simple corrections to the ADE based on 

solute storage, such as the transient storage model, do not faithfully represent all retention 

timescales (see Section 1.2), spurring the continued development of 1-D multiscale (or 
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stochastic) models that describe the wide distribution of residence times associated with 

hyporheic mass transport [Haggerty et al., 2002; Schumer et al., 2003; Boano et al., 2007]. 

Multiscale models account for solute retention in the hyporheic zone for anomalously long times. 

Anomalous transport refers to ensemble behavior that differs from basic Brownian motion 

diffusion, and thus is not described by the classical diffusion equation or ADE [Berkowitz et al., 

2006].)  Such anomalous transport behavior is described by generalized stochastic transport 

models, such as the General Master Equation, Fokker-Planck Equation, and Continuous-Time 

Random Walks [Metzler and Klafter, 2000; Meerschaert and Sikorskii, 2012]. Analytical 

solutions for the stream-hyporheic transport problem exist when certain model constraints are 

imposed. Specifically, (1) motion can be described by a random variable with independent and 

identically distributed jumps, (2) there is sufficient separation of velocity scales between mobile 

(stream) and immobile (hyporheic) zones so that immobilized mass can be treated as motionless, 

(3) the distribution of jump lengths and wait times are independent, and (4) the jump and wait-

time distributions are well-behaved, typically with the in-stream distribution described by a thin-

tailed distribution (e.g., exponential) and the hyporheic wait-time distribution described by a 

heavy-tailed distribution (e.g., Pareto) [Metzler and Klafter, 2000; Schumer et al., 2003]. Further, 

analytical solutions are generally only available for asymptotic ensemble behavior. 

Streams with coarse, highly permeable sediment beds generally violate all three of these 

constraints. Porewater velocities immediately below the SWI generally have similar magnitude 

as the water column.  Further, mixing rates decay sharply across the interface, causing highly 

solute motion to be highly correlated with location in the streambed. Finally, coherent turbulent 
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flow structures penetrate into the hyporheic zone [Breugem et al., 2006; Blois et al., 2012], 

generating correlated, spatially-dependent motions below the surface. It is therefore unclear if 

current multiscale models can be applied to coarse-bed, high-permeability streams.  

1.3.3 Flow-biofilm interactions  

Early studies of fluvial transport focused primarily on physical features of the stream, such as 

the flow field, bed roughness, and sediment permeability [Elder, 1959; Fischer et al., 1979; 

Newbold et al., 1981; Bencala and Walters, 1983; Thibodeaux and Boyle, 1987; Elliott and 

Brooks, 1997b]. Reactive-transport models for these systems generally parameterize physical and 

chemical processes independently, and thus that reactions do not alter material transport or 

system properties in any way [Harvey and Fuller, 1998; Marzadri et al., 2011; Bardini et al., 

2012a]. However, biofilms change their physical environment as they grow.  

Microbial metabolism depends on nutrient and carbon transport to regions of high microbial 

abundance, and microbial growth alters transport in these regions by covering sediment grains, 

thereby altering streambed roughness, filling pore space, and reducing streambed permeability 

[Orr et al., 2009]. Biofilm growth above the SWI, on the order of 10 m to 1 cm (Figure 1.3c), 

modulates turbulence intensity near the streambed [Nikora et al., 2002; Larned et al., 2011], 

creating a local environment that favors solute and particle retention [Battin et al., 2003a; Larned 

et al., 2004]. Biological growth therefore represents a feedback between transport and 

transformation of water-borne material at the SWI and within the hyporheic zone [Biggs et al., 
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2005; Marion et al., 2014]. However, few studies have directly related alterations in mass 

transport to biofilm growth or morphology.  

1.3.4 Sediment mixing by bioturbation 

Advective transport can be very slow in low-energy flows, such as in lakes and during low 

discharge summer months. Molecular diffusion is expected to be the controlling physical 

transport process in the absence of advective porewater flow. However, stream and lake 

sediments are rarely devoid of life, and macrofauna movements can result in rapid local mixing 

(biodiffusion), nonlocal transport due to burrowing and feeding at depth (conveyor feeding), and 

pumping of surface waters into and out of sediments [Robbins et al., 1979; Huettel and Gust, 

1992; Boudreau and Jorgensen, 2001; Kristensen et al., 2012]. Models for transport in low-

permeability sediments that do not include transport driven by macrofauna have been shown to 

severely underestimate surface-subsurface exchange [Thibodeaux and Bierman, 2003]. Densities 

of macrofauna can range from 10-100,000/m2 [Brinkhurst, 1970; Cook and Johnson, 1974; 

McCall and Tevesz, 1982], and the movements of these organisms ultimately determine the rate 

at which solutes and sediments are mixed [Meysman et al., 2006].  



38 

 

 

 
Figure 1.7. Burrow traces of the benthic oligochaete water worm Lumbriculus variegatus, 

illuminated by fluorescent tracer particles. Image is 14.0 mm W 7.9 mm H  [Roche et al., 

2016]. 

Various analytical models have been used to describe the multiple classes of organism 

behaviors [Boudreau, 2000]. By prescribing an assumed transport behavior that approximates 

one or several organism behaviors, models can provide reasonable fits to overall mixing patterns 

after calibration [Boudreau, 2000; Meysman et al., 2010]. However, they generally use 

parameters that are not directly related to basic properties of the underlying mixing mechanism, 

such as the number of organisms present or descriptions of organism motion. Further, available 

analytical models are often only applicable in the asymptotic limit after a large number of 

transport events have occurred [Meysman et al., 2008b]. Averaging times can be prohibitively 

long when bioturbation is heterogeneous [Lick, 2006]. This is likely the general case for most 

animals, given that their movements are episodic in nature [François et al., 1997; Klafter and 

Sokolov, 2005; Benhamou, 2007; Meysman et al., 2008b].  
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1.4 Objectives and scope 

This dissertation is motivated by the need for parsimonious, mechanistic models describing 

solute and particle transport at the SWI. The mechanisms we study include both physical (i.e., 

hydrodynamics, Chapters 2-3) and biological (benthic biofilms, Chapter 4, and bioturbation, 

Chapter 5), reflecting the diversity of transport processes found in natural aquatic systems.  

In Chapter 2 we present an experimental investigation of solute transport in a laboratory 

model of a stream with a coarse sediment bed (4 cm spheres) arranged in a regular geometry 

(simple cubic packing). The objectives of this study were to understand turbulent momentum and 

mass transport relate in the hyporheic zone. We used custom-built, high-frequency sensors to 

measure how subsurface concentrations vary with streambed depth and with flowrate, and 

related these observations of mass transport to velocity measurements (momentum transport). 

We explore the upscaled implications of turbulent stream-subsurface flow coupling via a 

numerical particle tracking model in Chapter 3, with the goal of quantifying vertical mixing and 

downstream transport downstream transport and vertical mixing across the surface-subsurface 

continuum. We parameterize the model with two hypothesized profiles of vertical hyporheic 

mixing. Each profile is fit to steady-state injection results from Chapter 2, and the best fit models 

are then used to simulate a pulse injection for a stream with identical properties. Results from 

these upscaled simulations are used to understand what physical features of high-permeability 

streams influence breakthrough curve measurements.  
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We explore the linkage between biofilm growth and fine particle transport in Chapter 4. We 

simultaneously measured biofilm structure and fine particle dynamics in experimental streams 

mesocosms. We then fit a multiscale, stochastic mobile-immobile model to calculate particle 

immobilization rates and residence time distributions in the immobile zone from the in-stream 

concentration time-series. These fits were correlated against measures of biofilm structure to 

determine if specific biofilm features controlled fine particle deposition and retention. 

 Chapter 5 details an experimental and modeling study of bioturbation by the aquatic worm 

Lumbriculus variegatus. The objective of this analysis was to develop a model that directly 

relates sediment mixing to the underlying mechanisms of worm motion and burrow construction. 

We directly measured both burrow formation and the redistribution of a fluorescent sediment 

tracer using time-lapse photography. We then developed a random walk model that was directly 

parameterized from the observed burrowing statistics. Model results were evaluated using 

observed tracer particle redistribution to assess the model’s ability to capture key features of 

mixing, and compared with fits from a simple advection-diffusion model to evaluate the 

appropriateness of simplifying assumptions commonly used in the field. 

We summarize the overall findings and contribution of the dissertation and suggest future 

research directions in Chapter 6. 
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CHAPTER 2 

Turbulence links momentum and solute exchange 

in coarse-grained streambeds 
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ABSTRACT 

The exchange of solutes between surface and porewaters is an important control over stream 

ecology and biogeochemistry in the hyporheic zone. Turbulence in the water column is known to 

enhance transport across the sediment-water interface (SWI). However, the link between 

turbulent momentum and solute transport within the hyporheic zone remains undetermined due 

to the lack of high-frequency in situ observations. Here, we relate turbulent momentum and 

solute transport using measurements within a streambed with 4-cm sediments. Velocities were 

measured using endoscopic particle imaging velocimetry and used to generate depth profiles of 

turbulence statistics. Solute transport was observed directly within the hyporheic zone using a 

custom-built microsensor array in the sediment bed. Injection experiments were used to assess 

both turbulent fluxes across the SWI and patterns of hyporheic mixing. Depth profiles of 

concentration fluctuations were compared with profiles of turbulence statistics, and profiles of 

mean concentration were compared to an effective dispersion model. Fluorescent visualization 

experiments at a stream Reynolds number of 𝑅𝑒 = 27,000 revealed the presence of large-scale 

motions that ejected tracer from porewaters. These events increased in frequency and intensity 

for 𝑅𝑒 = 55,000 but were not present at 𝑅𝑒 = 13,000. Turbulent shear stresses decayed greatly 

within the first grain diameter below the sediment-water interface for 𝑅𝑒 = 22,000 and 39,000, 

and within two grain diameters for 𝑅𝑒 = 75,000. High frequency concentration fluctuations 

exhibited similar decay patterns as the turbulent shear stresses. Comparison with the dispersion 

model showed that hyporheic mixing was enhanced in regions where turbulent stresses occurred. 
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Together, these results show that penetration of turbulence directly controls both interfacial 

exchange and mixing within the hyporheic zone.  

2.1 Introduction 

Hyporheic exchange has long been recognized as a primary control of nutrient, carbon, and 

contaminant cycling in rivers and streams. Interactions between surface and hyporheic waters 

influence the fate of these reactive constituents by controlling their fluxes to, and residence times 

within, bioreactive regions of the hyporheic zone [Jones and Mulholland, 1999; Lawrence et al., 

2013; Boano et al., 2014]. Assessment and prediction of overall stream function (e.g., net 

hyporheic metabolism, contaminant removal) therefore requires a proper description of the 

mechanisms governing hyporheic transport. Although physical models for hyporheic transport 

have advanced substantially over the past two decades, current physical models only capture 

transport associated with slower-moving viscous flows that are governed by Darcy’s Law. They 

thus ignore faster exchange processes associated with fluid turbulence that can control hyporheic 

exchange in high permeability streambeds [Nagaoka and Ohgaki, 1990; Shimizu et al., 1990; 

Packman et al., 2004; Chandler et al., 2016; Voermans et al., 2017]. A motivating question for 

the current study is: where, and to what extent, does turbulent transport enhance hyporheic 

exchange? 

Current physical models of hyporheic exchange are rooted in experimental observations of 

advective and dispersive transport in the subsurface [Thibodeaux and Boyle, 1987; Huettel et al., 

1996; Bottacin-Busolin and Marion, 2010; Hester et al., 2017]. Advective transport is controlled 
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by a combination of energy gradients near the sediment-water interface (SWI), properties of 

stream sediments, and large-scale interactions with underlying aquifers [Boano et al., 2014; Fox 

et al., 2014]. Roughness elements such as surface-exposed grains, dunes, and riffles alter the 

near-streambed pressure field, and the resulting hydrodynamic forces drive water from high-

pressure to low-pressure regions of the streambed. This process of “advective pumping” is well 

understood to regulate hyporheic fluxes and residence times [Elliott and Brooks [1997b; 1997a]; 

[Cardenas, 2015]. Turbulence is commonly assumed to influence such a thin region of the 

streambed that it can effectively be ignored [Cardenas and Wilson, 2007; Tonina and Buffington, 

2009].  

The advective pumping model predicts limited or no exchange in streambeds with very small 

topographic features. However, exchange rates in flat gravel beds have measured 2-4 orders of 

magnitude greater than those predicted by advective pumping or by basic diffusion [Packman et 

al., 2004; O'Connor and Harvey, 2008], and experimental evidence suggests that turbulent 

velocity fluctuations are a primary driver of solute exchange [Nagaoka and Ohgaki, 1990]. In 

these instances, exchange is typically described using a dispersion model with an effective 

coefficient at the SWI, 𝐷𝑒𝑓𝑓. This coefficient is determined from observations of net exchange 

between the water column and the streambed, based on changes in water column concentrations 

[C P Richardson and Parr, 1988; Elliott and Brooks, 1997a; Packman et al., 2004; O'Connor 

and Harvey, 2008; Grant et al., 2012]. However, it is unclear how interpretations of exchange 

are biased by this model choice when velocities and mixing rates vary spatially in the streambed.  



45 

 

 

Despite the absence of a mechanistic model, detailed experimental and numerical 

investigations of subsurface velocities have improved understanding of turbulent momentum 

transport within the hyporheic zone. A key finding is that both stream flow and bed permeability 

affect the flow structure through the entire surface-subsurface continuum [Zagni and Smith, 

1976; Manes et al., 2011; Blois et al., 2013]. Flows over permeable sediment beds exhibit higher 

overall flow resistance, deviations from the canonical logarithmic turbulent velocity profile, and 

modified shapes and intensities of the turbulent kinetic energy (TKE) profile compared to flows 

over impermeable beds having similar boundary roughness [Ruff and Gelhar, 1972; Zagni and 

Smith, 1976; Zippe and Graf, 1983; Breugem et al., 2006; Manes et al., 2009; Manes et al., 

2011]. Further, turbulent eddies from the water column penetrate across the SWI, driving 

momentum below the interface [Stoesser et al., 2007; Blois et al., 2012]. Within the bed, 

momentum is dissipated by drag forces around bed sediment grains, resulting in rapid decreases 

in velocities, velocity fluctuations, and pressure fluctuations [Vollmer et al., 2002; Breugem et 

al., 2006]. Simulations and experiments suggest that these turbulent flow properties influence 

mass transport in the hyporheic zone, with velocity fluctuations inducing mixing in porewaters, 

and low-frequency pressure fluctuations inducing subsurface advection without appreciable 

mixing [Packman et al., 2004; Chandesris et al., 2013]. Studies of flows over sparse vegetation 

also suggest that transport is enhanced by larger-scale flow structures generated by shear 

instabilities at the SWI [White and Nepf, 2007; Ghisalberti, 2009].  

A predictive understanding of turbulent solute exchange in coarse sediment beds is currently 

limited by a lack of high frequency observations in porewaters. Such observations are needed to 
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evaluate the specific flow features that control hyporheic transport. To address this need, we 

conducted two series of experiments in laboratory channels with a bed composed of coarse 

spheres, which were used to enable novel in situ observations of turbulent flow and solute 

transport. In the first set of experiments, the hyporheic flow field was measured directly within 

pores using an endoscopic flow visualization system. In the second set of experiments, tracer 

mixing was observed in situ using a custom-constructed sensor array. Experiments were 

conducted over a range of flows to assess momentum and mass transport with varying degrees of 

surface-subsurface flow coupling.   

2.2 Methods 

2.2.1 EPIV Experiments 

Endoscopic particle imaging velocimetry (EPIV) was used to directly measure hyporheic 

porewater flow in the Ven Te Chow Hydrosystems Laboratory at the University of Illinois at 

Urbana-Champaign (Urbana, IL). Details of the EPIV experimental setup are provided in [Blois 

et al., 2012]. In brief, experiments were conducted in a recirculating flume with a 4.8-m L  

0.35-m W  0.6-m H test section.  The test section was packed with 0.04-m spheres fixed in a 

simple cubic packing, creating a 0.24-m streambed that was 9 spheres wide and 6 spheres high. 

The water level was fixed at 0.16 m, and water was recirculated at three different discharge 

levels reported in Table 2.1. 
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The instantaneous flow field within the porespace was imaged with an endoscopic camera, 

which was illuminated by a laser endoscope that produced a thin light sheet centered in the high 

porosity plane of the pore throat. The experimental setup provided a 0.6-mm diameter circular 

field of view in the center of a pore throat that could image the 2-D flow field at 7 Hz frequency. 

Velocity time series were averaged over the entire 2-D field and decomposed into mean and 

fluctuating components using standard Reynolds decomposition [Tennekes and Lumley, 1972]: 

𝑢 = 𝑢̅ + 𝑢′ 
(2.1) 

𝑤 = 𝑤̅ + 𝑤′ 

where 𝑢 is instantaneous longitudinal velocity decomposed into its mean 𝑢̅ and fluctuating 𝑢′ 

components, and 𝑤 is instantaneous vertical velocity decomposed into its mean 𝑤̅ and 

fluctuating 𝑤′ components. The turbulent Reynolds stresses, 𝑢′𝑤′̅̅ ̅̅ ̅̅ , and vertical stresses, 𝑤′𝑤′̅̅ ̅̅ ̅̅ , are 

reported in this study. Time series are reported for measurements across a vertical column of 

pore throats over the streambed depth, at elevations of 𝑧 = -0.04, -0.08, -0.12, -0.16, -0.20, and -

0.24 m, where 𝑧 = 0 represents the elevation of the SWI (top of uppermost sediment grains). The 

same setup was also used to measure velocities in the water column. 

2.2.2 Solute transport experiments: Laboratory flume and sediment bed 

Solute mixing experiments were conducted in a 2.5-m L  0.2-m W  0.5-m H recirculating 

flume in the Environmental and Biological Transport Processes Laboratory at Northwestern 

University. Water was recirculated from the downstream to the upstream end-well of the flume 

via a PVC pipe and pump. An in-line vortex-shedding flowmeter (Rosemont 8800) was used to 

measure the total flow rate. The flume slope was adjustable via a manual jack.  
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The sediment bed was constructed from PVC spheres (Figure 2.1). The bed consisted of a 1-m 

inlet section that was randomly packed with 3.8-cm and 6.4-cm spheres for flow conditioning, 

and a downstream test section filled with 3.8-cm spheres in a simple cubic packing (CP) array of 

5 spheres W x 6 spheres H. The CP bed was constructed by stacking vertical columns of 6 

spheres onto a threaded 0.32-cm diameter stainless steel rod. Each column was fixed to a 0.64 

cm-acrylic sheet, which was installed as a false bottom in the flume. The array of spheres was 

fixed within the flume through insertion of two 0.64-cm thick acrylic sheets between the bed and 

the flume sidewalls to maintain tight cubic packing. 

Results are in terms of distances normalized by the grain diameter (i.e., 𝐿∗ = 𝐿/3.8 cm). 

Longitudinal distances 𝑥∗ are reported relative to the solute injection location. Transverse 

distances are reported from the edge of the flume sidewall. 𝑦∗ = 2.5 is the flume centerline. 

Depths are reported relative to the SWI, which is defined as the top of the first row of spheres 

comprising the bed, so that 𝑧∗ = -1 at the bottom of the first layer of spheres.  
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Figure 2.1. Schematic of recirculating flume with bed composed of a flow-condition region of 

randomly-packed spheres and a test section composed of a cubic-close-packed array of 

spheres.  

2.2.3 Solute transport experiments: concentration microsensors 

A cross-sectional array of grains in the test section was instrumented with high-frequency 

conductivity sensors for in situ observation of salt tracer concentrations. The sensors were 2.5- 

mm interdigitated electrodes (Synkera Technologies, Longmont, CO) with 25.4-m spacing and 

gold conductors, wired into a resistor-capacitor-resistor integrated circuit. The small sensor size 

allowed pore waters to be sampled nearly at-a-point without significantly perturbing the 

porewater flow field. Sensors were surface-mounted onto the grains using high-resistivity epoxy. 

One sensor was implanted directly onto each of the 30 grains in a y-z cross section of the regular 

packed streambed, located 𝑥∗ = 14.5 downstream of the test section inlet. Each sensor was 

aligned with the centerline of the spherical grain in the 𝑥-𝑧 plane and placed 0.15 grain diameters 
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below the top of the grains in the upstream direction (i.e., sensor depth for top layer of grains is 

𝑧∗ = -0.15). All wires were shielded and grounded to minimize noise, and unsheathed wire leads 

were sealed with electrically resistive wax to ensure only the sensor was exposed. Calibrations 

confirmed that the 3.8-cm sensor spacing in the array did not yield interference between 

measurements at adjacent sensors. Wires were run downstream from the sensors and along grain-

to-grain contact points to minimize disturbance of the porewater flow field. 

Circuits were powered and sampled with a National Instruments PCI-6229 data acquisition 

board. Output and input signals were controlled and recorded using LabView Signal Express 

2013 software (National Instruments, Austin, TX). Circuits were powered in parallel by a 400-

mV, 100-Hz AC waveform. The returning voltage was bandpass filtered and recorded in 

Labview, and this file was exported to Matlab version R2015a (Mathworks, Cambridge, MA) for 

further analysis. All waveforms were bias-corrected and sampled at the peaks, yielding a 200-Hz 

sample rate.  
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Figure 2.2. Simple-cubic-packed sediment module with sensors installed (left). Sensors were 

2.5-mm square interdigitated electrodes fixed to the sediment grains with epoxy and sealed 

with resistive wax (right). 

Sensors were calibrated in situ. A known volume of reverse osmosis (RO) water was first 

pumped into the flume from a laboratory-grade reservoir, and flow was initiated. NaCl solution 

was added to the flume. Once the solute was fully mixed with flume water, a one-minute 

conductivity time series was recorded. A three-parameter calibration curve was used of the form 

𝐶 =  exp ((𝑉 − 𝑎3)/𝑎1) − 𝑎2, 𝑅2 ≥ 0.995, ≥ 9 𝑑𝑜𝑓 (2.2) 

 

where 𝐶 is NaCl concentration, 𝑉 is voltage, and 𝑎𝑖 are constants. For all experiments, steady-

state NaCl concentrations were limited to 0-200 μm, which yielded the greatest measurement 

sensitivity.   

2.2.4 Solute transport experiments: flow conditions and measurements  

Experiments were performed over a range of flow conditions reported in Table 2.1. For each 

flowrate the flume slope was adjusted to match the surface water slope to yield uniform flow 

conditions. The water surface elevation was measured with a digital point gauge attached to a 

rail-mounted carriage above the flume. Water column depth, 𝐻, was measured from the free 

surface to the tops of the sediment grains. 

Table 2.1. Flow conditions for all experiments. 

𝑹𝒆 13,000 22,000 27,000 39,000 55,000 75,000 

Experiment Solute EPIV Solute EPIV Solute EPIV 

𝑸 (L/s) 2.2 8.0 4.4 14.0 8.8 26.0 
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𝑯 (cm) 12.3 16.0 12.3 16.0 12.3 16.0 

𝑭𝒓 0.09 0.11 0.18 0.20 0.38 0.37 

𝑼̅ (cm/s) 10 14 20 24 41 47 

𝑼̅𝒑(cm/s) 0.7 -- 1.2 -- 2.8 -- 

𝒅𝒈(cm) 3.8 

𝝓 1 – 𝜋/6 ≈ 0.476 

K (cm2) 0.0321 

 

Free-stream velocity measurements 

An acoustic Doppler velocimeter (ADV) was used to measure free-stream velocities (SonTek 

16MHz MicroADV, San Diego, CA). The flume was seeded with 8-μm particles (SonTek, San 

Diego, CA) to increase signal-to-noise ratio for velocity measurements. Velocities were recorded 

at 60 Hz for a minimum of 2 min. All reported velocity statistics showed no correlation with 

measurement duration beyond this time. Spikes in the velocity time series were filtered using the 

phase-space thresholding algorithm of Goring and Nikora [2002] implemented in the WinADV 

(v2.028) software package [Wahl].  

Three-dimensional velocities (𝑢, 𝑣, 𝑤) were measured in vertical profiles, starting from a 

location 5 cm below the free surface and ending at the sediment bed. Vertical profiles were 

measured for six different (𝑥-𝑦) positions and averaged in the 𝑥-𝑦 plane using the double-

averaging method of Nikora et al. [2007]. The Reynolds number of the overlying (surface) flow 

was calculated as 𝑅𝑒 = 𝑈𝐻𝜐−1, where 𝑈 is the mean free-stream velocity, and 𝜐 is the kinematic 

viscosity of water, taken to be 10-6 m2/s. Froude number was calculated as 𝐹𝑟 = 𝑈(𝐻𝑔)−1/2, 
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where 𝑔 is the acceleration due to gravity. Permeability, 𝐾 was estimated using the Karman-

Cozeny equation [Freeze and Cherry, 1979; O'Connor and Harvey, 2008]: 

𝐾 = 5.6 × 10−3
𝜙3𝑑𝑔

2

(1 − 𝜙)2
 (2.3) 

Porewater velocity measurements 

Porewater velocities were measured by injecting pulses of tracer at depths 𝑧∗ = -0.15, -1.15, -

2.15, -3.15, and -4.15. Injections were made manually for 0.5 s via narrow-gage silicon tubing 

that had been manually inserted into the pore space, with the tubing aligned with the 𝑦-axis and 

aperture located at exactly 𝑦∗ = 2. This orientation ensured that the injection would 1) minimally 

affect downstream momentum transport, and 2) the injection region would include fluid volume 

in both the pore throat and any dead zones between sediment grains.  

Injections were made at multiple locations 𝑥∗ upstream of the sensor array at each depth. The 

concentration time series was recorded for all sensors at the injection depth, and mean fluid 

velocity was estimated from each sensor as 𝑢 = 𝑥/𝑡𝑝𝑒𝑎𝑘, where 𝑥 is the distance between the 

injection location and the sensor array, and 𝑡𝑝𝑒𝑎𝑘 is the time at which the peak concentration 

pulse was recorded by a sensor. Velocities were then averaged over all injections to obtain the 

overall mean porewater velocity for each row of spheres, 𝑈𝑝(𝑧). 

2.2.5 Solute transport experiments: Steady-state solute injections 

The flume was filled with RO-purified water, and then a neutrally-buoyant NaCl solution was 

injected into porewater via a peristaltic pump using 0.12-mm silicon tubing and a custom-
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constructed pneumatic pulse dampener inserted into the injection line to reduce flow pulsation 

from the pump (see Supporting Information). An aquarium stone was installed onto the tubing 

outlet to diffuse the solution into the pore space and minimize disturbance of the porewater flow 

field. Each injection solution was made neutrally buoyant by heating to the appropriate 

temperature before injection into the flume.  The injection rate was also varied with flume 

flowrate to ensure the injection did not alter the subsurface flow field (0.46-0.58 cm/s). 

Injections were performed at mid-width over a series of injection depths, 𝑧𝑖𝑛𝑗
∗ . Injections were 

continued until salt concentrations at the sensor array reached statistical steady-state for at least 2 

min. The injection concentration was adjusted in each experiment so measured concentrations 

were within the sensors’ calibration range. A series of injections were performed until the 

background salt concentration reached ~10 μm, at which point the measured signal-to-

background ratios became too low to fully capture tracer injection dynamics. The flume was then 

drained, flushed, and re-filled with RO water for subsequent experiments. 

Two sets of steady-state injections were performed at each of the 3 flowrates listed in Table 

2.1. Injections near the sensor array were used to capture detailed statistics of the tracer plume 

before it had mixed completely with porewater (𝑥∗ = 3.5, 𝑦∗ = 2, 𝑧∗= -0.15,-1.15, -2.15, -3.15).  

A second set of injections were made at three locations upstream of the sensor array (𝑥∗ = 3.5, 

7.5, 12.5) to capture the larger-scale plume spreading and average mass flux. All injections were 

performed at least 𝑥∗ = 7 downstream of the entrance to the test section to ensure that the flow 

within the bed was fully developed. We confirmed experimentally that the porewater flow was 
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fully-developed by 𝑥∗= 2 (results not shown). Injections were repeated at and below the SWI (𝑧∗ 

= -0.15, -2.15), and at multiple transverse locations (𝑦∗= 2, 2.5, 3) to obtain ensemble statistics 

of plume spreading. 

2.2.6 Solute transport experiments: data analysis  

Sensor data were background-corrected. The background concentration treated as a linear 

ramp to account for the steady increase in background concentration over the course of injections 

due to the recirculating nature of the flume. Plume spreading was analyzed over the interval 

when measured concentrations were at a dynamic steady state (i.e., steady except for the effects 

of turbulence). The resulting background-corrected time series were decomposed into their 

frequency content by computing power spectral densities (PSD). For a real-valued concentration 

time series 𝐶𝑛 of 𝑁 samples, the PSD is defined as [Rodríguez-Iturbe and Rinaldo, 2001]:  

𝑃̂(𝑓) =
2∆𝑡

𝑁
|∑ 𝐶𝑛

𝑁−1

𝑛=0

𝑒−𝑖2𝜋𝑓𝑛|

2

 (2.4) 

where ∆𝑡 is the time between samples and 𝑃̂(𝑓) is the spectral power at frequency 𝑓. PSDs were 

normalized by the signal variance, 𝜎2:  

𝑃̂(𝑓)𝑛𝑜𝑟𝑚 =
𝑃̂(𝑓)

𝜎2
 (2.5) 

𝜎2 = ∫ 𝑃̂(𝑓)d𝑓
2 𝐻𝑧

0.1 𝐻𝑧

 
(2.6) 
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The limits of integration in Equation (2.7) correspond to the lowest common frequency 

measured across all experiments, 0.1 Hz, and the frequency at which spectral power decayed 

beyond 1% of its maximum for all experiments, 2 Hz. To compare across experiments, PSDs 

were integrated to determine the range of frequencies that accounted for 95% of the signal 

variance, 𝜎95
2 : 

𝜎95
2 = ∫ 𝑃̂(𝑓)d𝑓

𝑓95

0.1 𝐻𝑧

 (2.7) 

where 𝑓95 represents the frequency below which 95% of signal variance is captured. An increase 

in 𝑓95 between experiments indicates an increasing contribution from higher frequencies. 

Mean concentration, 𝐶̅(𝑧), was calculated for each sensor and then averaged over all sensors 

at each depth. Row-averaged values are reported as 〈𝐶̅〉𝑦 Root-mean-square concentrations, 

𝐶𝑟𝑚𝑠 = √𝜎2 , were normalized by the mean concentration measured across all sensors in the 

injection row where a non-zero concentration was recorded. 

2.2.7 Solute transport experiments: Whole streambed analysis 

Mass recovery was used to quantify the amount of injected solute that exchanged from the 

porewater to the water column. Recovery, 𝑅, is quantified as the fraction of injected mass, 𝑚𝑖𝑛𝑗, 

that was measured at the sensor array, 𝑚𝑚𝑒𝑎𝑠: 

 

𝑅 =
𝑚𝑚𝑒𝑎𝑠

𝑚𝑖𝑛𝑗
  (2.8) 
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𝑚𝑚𝑒𝑎𝑠 =
1

𝜙
∫ 𝐶𝑚𝑒𝑎𝑛 d𝑧

0

𝑧 =−5.15𝑑𝑔

 (2.9) 

𝑚𝑖𝑛𝑗 =
𝐶𝑖𝑛𝑗  𝑄𝑖𝑛𝑗

𝑈𝑝 𝑤
 (2.10) 

where 𝐶𝑖𝑛𝑗 is the injection concentration, 𝑄𝑖𝑛𝑗 is the injection flowrate, 𝜙 is bed porosity, 𝑈̅𝑝 

is the mean porewater velocity, 𝑤 is the flume width, and 𝑧 = -5.15𝑑𝑔 is the location of the 

lowest row of sensors. Here, 𝑚 is interpreted as a measure of mass per unit area in the 𝑥-𝑦 plane 

[M/L2]. Note that an implicit assumption of (2.9) is that solute is fully mixed over the unit cell 

comprising the pore volume surrounding each sphere. The integral in Equation (2.9) was 

evaluated numerically using the trapezoid rule.  

Effective dispersion model 

A 1-D vertical dispersion model was fit to subsurface injections (𝑧𝑖𝑛𝑗
∗  = -2.15) to evaluate if 

the observed tracer transport could be adequately represented as an effective dispersion process:  

 
𝜕𝐶𝑝𝑟𝑒𝑑

𝜕𝑡
= 𝐷𝑒𝑓𝑓  

𝜕2𝐶𝑝𝑟𝑒𝑑

𝜕𝑧2
 

𝐶𝑝𝑟𝑒𝑑(0, 𝑡) = 0 

(2.11) 

where 𝐶𝑝𝑟𝑒𝑑 is the predicted concentration of all sensors in a given row and 𝐷𝑒𝑓𝑓 is a spatially 

uniform dispersion coefficient. 𝐷𝑒𝑓𝑓 was obtained for each injection by fitting to the profile of 

〈𝐶̅〉𝑦,𝑚𝑜𝑑. The analytical solution to (2.11) is: 

〈𝐶̅〉𝑦,𝑚𝑜𝑑(𝑧, 𝑥) =
𝑀

𝜙(4𝜋𝐷𝑒𝑓𝑓 𝑥/𝑈̅𝑝)
0.5 (𝑒

−
(𝑧−𝑧𝑖𝑛𝑗)

2

4𝐷𝑒𝑓𝑓 𝑥/𝑈̅𝑝 − 𝑒
−

(𝑧+𝑧𝑖𝑛𝑗)
2

4𝐷𝑒𝑓𝑓𝑥/𝑈̅𝑝)  (2.12) 
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where erf is the error function, and 𝑀 is a normalization mass. Two different normalization 

masses were tested: 

𝑀 = 𝑚𝑖𝑛𝑗 
(2.13) 

𝑀′ =
2

𝜙
∫ 𝐶𝑚𝑒𝑎𝑛𝑑𝑧.

𝑧𝑖𝑛𝑗

𝑧 =−5.15𝑑𝑔

 (2.14) 

Equation (2.13) normalizes results using the total mass using the total mass injected while 

Equation (2.14) normalizes results based on integration over the concentration profile. 

Normalization based on Equation (2.14) assumes that mixing is uniform below the injection 

location (i.e., mixing is not enhanced by flow coupling) and no tracer has reached the flume 

bottom. Fits for the dispersion coefficient based on 𝑀′ are denoted by 𝐷′𝑒𝑓𝑓. 

𝐷𝑒𝑓𝑓 fits obtained from each concentration profile were averaged to calculate ensemble-average 

estimates of the effective dispersion coefficient at each flowrate, 𝐷𝑒𝑛𝑠. These values were then 

used to generate predictions for ensemble concentration profiles, from Equation (2.12), with 

𝐷𝑒𝑛𝑠 in place of 𝐷𝑒𝑓𝑓. Predicted mass recovery, defined as the fraction of injected mass retained 

in the streambed at downstream distance 𝑥, was also calculated from the analytical solution to 

Equations (2.11): 

𝑅𝑝𝑟𝑒𝑑 = ∫ 〈𝐶〉𝑦,𝑝𝑟𝑒𝑑(𝑧, 𝑥)d𝑧
0

−∞

= −erf [
𝑧𝑖𝑛𝑗

(4𝐷𝑒𝑛𝑠 𝑥/𝑈̅𝑝)
0.5]. (2.15) 

Mass retention is plotted against the dimensionless timescale associated with vertical mixing 

over one grain diameter: 
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𝑡∗ =
(x/𝑈̅𝑝)𝐷𝑒𝑓𝑓

𝑑𝑔
2

 (2.16) 

Because the experiments were conducted under steady conditions, 𝑡∗ also corresponds to the 

downstream distance required for vertical mixing over one grain diameter. Normalization by 𝑡∗ 

collapses all model predictions into a single curve. 

2.3 Results 

2.3.1 Surface-porewater flow coupling 

Profiles of mean longitudinal velocity and turbulent stresses, measured in EPIV experiments, 

are presented in Figure 2.3. All profiles were characterized by a non-zero velocity at the SWI. 

Mean porewater velocities exhibited a minimum 𝑧∗= -1, which is consistent with prior studies of 

turbulent flows over a simple-cubic-packed bed of spheres [Pokrajac et al., 2007; Manes et al., 

2009]. Turbulent 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑤′𝑤′̅̅ ̅̅ ̅̅  plots both show elevated values at the SWI and exponentially 

decreasing values in the subsurface. The magnitude of peak 𝑢′𝑤′̅̅ ̅̅ ̅̅  stress was greatest at the SWI 

for all 𝑅𝑒. 𝑢′𝑤′̅̅ ̅̅ ̅̅  values decayed to 1% of their peak value by 𝑧∗= -2 for 𝑅𝑒 = 75,000 and by 𝑧∗= -

1 for 𝑅𝑒 = 22,000 and 39,000.  
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Figure 2.3. Left: Profiles of first- and second-order velocity statistics for EPIV experiments. 

Dotted rectangle represents region shown in adjacent plots. Right: Same profiles, with only near-

bed and subsurface shown.  
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2.3.2 Solute transport results 

Flow visualizations and in situ concentration measurements 

Flow visualizations from surface and subsurface injections (𝑧𝑖𝑛𝑗
∗  = -0.15 and -2.15, 

respectively) show rapid mixing at the SWI (see Supporting Information). The large sediment 

grains act as roughness elements that protrude into the bulk flow, recirculation cells formed 

between grains and enhanced exchange with porewaters. These recirculations are most visible 

and persist longest at 𝑅𝑒 = 13,000. Larger-scale interactions between the water column and 

porewaters are visible to a depth of at least 2 grains below the SWI for 𝑅𝑒 = 27,000 and 55,000. 

Interactions appear as intermittent ejections of high concentration, low velocity fluid into the 

water column (Figure 2.4). These results suggest that coherent motions of size 𝑙 ≥ 2𝑑𝑔 are 

influencing subsurface transport. Ejection frequency and intensity increased from 𝑅𝑒 = 27,000 to 

𝑅𝑒 = 55,000, but they are not present at 𝑅𝑒 = 13,000. 

0.00 s 0.75 s 1.25 s 2.00 s 

    
Figure 2.4. Ejection event during a subsurface injection (𝑧𝑖𝑛𝑗

∗  = -2.15) at 𝑅𝑒 = 55,000. Images 

at 0.75 s and 1.25 s show that the event is at least 2 sediment grains wide. Sediment grains are 

3.8 cm in diameter. 
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Figure 2.5. Time series observations of solute concentrations for an injection at location 

(𝑥𝑖𝑛𝑗
∗ , 𝑦𝑖𝑛𝑗

∗ , 𝑧𝑖𝑛𝑗
∗ ) = (3.5, 2.5, -0.15) under a flow rate of 8.8 L/s. Injection and observation 

locations over a cross-section of the bed are shown on the right. Flow is into the page, yellow 

dot indicates the injection location, and the monitoring locations are indicated with blue 

spheres.  

In situ solute measurements show that energetic, high-frequency fluctuations dominate the 

time series near the SWI (Figure 2.5). Concentration fluctuations are most intense at the SWI. 

High frequency fluctuations decay with depth in the bed, while lower-frequency fluctuations 

persist at deeper locations. These trends are also observed in power spectral density and 𝑓95 plots 

(Figure 2.6a,b). An asymptotic limit in 𝑓95 was reached within one grain diameter for 𝑅𝑒 = 

13,000 and 27,000, but 𝑓95 decays more slowly and to a higher asymptote for 𝑅𝑒 = 55,000. 

These trends are coincident with the second-order turbulence statistics reported in Figure 2.3, 
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which show rapid decay of 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑤′𝑤′̅̅ ̅̅ ̅̅  stresses over roughly one grain diameter for 𝑅𝑒 = 

22,000 and 39,000, but greater turbulent penetration to a depth of ~2 grain diameters at 𝑅𝑒 = 

75,000.  

Overall concentration variability, quantified by normalized 𝐶𝑟𝑚𝑠 values, is presented in Figure 

2.6c. These profiles differ from profiles of 𝑓95 and turbulence statistics by exhibiting a peak 

concentration below the SWI, which moves deeper into the streambed with increasing flowrate.   

Peak 𝐶𝑟𝑚𝑠 at 𝑅𝑒 = 27,000 and 55,000 also corresponds to the position where 𝑢′𝑤′̅̅ ̅̅ ̅̅  stresses have 

decayed to <1% of their maximum for EPIV experiments at similar 𝑅𝑒 (39,000 and 75,000, 

respectively). This suggests that the location of peak 𝐶𝑟𝑚𝑠 is found below the streambed depth 

where turbulent shear stresses affect solute mixing. The location of peak 𝐶𝑟𝑚𝑠 was observed at 

the SWI for 𝑅𝑒 = 13,000, which indicates that solute transport was not influenced by turbulent 

shear stresses beyond one grain diameter for this flowrate. This result is supported by the 

similarity of 𝑢′𝑤′̅̅ ̅̅ ̅̅  stress and 𝐶𝑟𝑚𝑠  profiles at 𝑅𝑒 = 22,000 (Figure 2.3) and 13,000, respectively, 

which approach zero within the first grain diameter of the bed. 
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Figure 2.6. (a) Power spectral densities for two injections at 𝑥𝑖𝑛𝑗
∗  = 3.5, 𝑦𝑖𝑛𝑗

∗  = 2 and 𝑅𝑒 = 

55,000. High-frequency power is filtered within the streambed, while power at low 

frequencies is similar at all depths. (b) Profiles of 𝑓95 for experiments at 𝑥𝑖𝑛𝑗
∗  = 3.5, 𝑦𝑖𝑛𝑗

∗  = 2. 

𝑓95 values, derived from power spectral densities using Equation (2.7), capture the shift to 

variability dominated by lower frequencies. Higher frequencies contribute to signal variability 

at higher flowrates, and high frequency content decreases to asymptotic values at similar rates 

as the decay of turbulent stresses, shown in Figure 2.3. (c) Location of peak 𝐶𝑟𝑚𝑠  propagates 

deeper into the streambed as flowrate increases. 
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Upscaled solute transport properties 

Mean concentration profiles for subsurface (𝑧𝑖𝑛𝑗
∗  = -2.15) injections were used to calculate an 

effective vertical dispersion coefficient 𝐷𝑒𝑓𝑓 for each flowrate. Example fits based on the two 

mass normalizations 𝑀 and 𝑀’ (Equations (2.13) and (2.14), respectively) are shown in Figure 

2.7a. Fits based on the injection mass (𝑀 = 𝑚𝑖𝑛𝑗, solid line) resulted in substantial 

overestimation of the effective dispersion rate, as the model attempted to compensate for the 

large fraction of input mass that was lost to the water column. These fits were unrealistic, since 

they predicted propagation of tracer several grain diameters beyond the depth of the streambed. 

Model performance, measured by R2 values (see supporting information), also showed a clear 

dependence on overall mass recovery 𝑅 (Equation (2.8)). Note that application of a reflective 

boundary at the flume bottom would have resulted in equally unrealistic fits, since little-to-no 

tracer was observed at the deepest sensors in all experiments. In contrast, model fits using 

normalization mass 𝑀′ provided reasonable predictions at all locations below the injection point. 

Values of 𝐷′𝑒𝑓𝑓, based on the normalization 𝑀′(Equation (2.14)), were therefore use to generate 

ensemble-averaged values of the effective dispersion coefficient, 𝐷𝑒𝑛𝑠 (Figure 2.7b). 𝐷𝑒𝑛𝑠 values 

show a monotonic increase with flowrate, though the estimated values are not significantly 

different between 𝑅𝑒 = 13,000 and 27,000. 
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Figure 2.7. (a) Comparison of observed (squares) and fit (lines) downstream concentration 

profiles C(z*) for an experiment with 𝑅𝑒 = 27,000, 𝑥𝑖𝑛𝑗 
∗ = 12.5, 𝑧𝑖𝑛𝑗

∗  = -2.15. Fits normalized 

to mass below the injection point (dashed line) better represent observed concentrations at all 

bed depths. (b) Ensemble average of all best-fit effective dispersion coefficients at each 

flowrate. Error bars show 1 standard deviation.  

Modeled concentration profiles based on 𝐷𝑒𝑛𝑠 are compared to ensemble-averaged 

observations in Figure 2.8. Enhanced mixing at depths -2.15 ≤ 𝑧∗ ≤ -0.15 is most visible at 𝑅𝑒 

= 55,000, evidenced by much faster propagation away from the injection location at these depths 

compared to the model predictions (Figure 2.8a,b,d). Asymmetry of observed concentrations 

about the subsurface injection point is due to the combined effect of rapid solute propagation 

near the SWI, which dominates at early times (Figure 2.8a) and enhanced mass loss to the water 

column, which dominates at late times (Figure 2.8e). Rapid mixing at -2.15 ≤ 𝑧∗ ≤ -0.15 also 

results in greater mass exchange than the model predicts with uniform 𝐷𝑒𝑛𝑠, evidenced by the 

lower observed mass recovery for all but one experiment in Figure 2.9. 
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Figure 2.8. Comparison of ensemble-averaged mean concentrations profiles observed in 

experiments (markers) with constant-coefficient dispersion model fits (solid lines). The model 

best describes transport at depths below 𝑧∗ ≈ -2.15 but does not adequately describe enhanced 

mixing at depths -2.15 ≤ 𝑧∗ ≤ -0.15. 
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Observed concentrations near the SWI deviated from the modeled concentration profiles 

approximately 75% faster at 𝑅𝑒 = 55,000 (Figure 2.8c,d) than at 𝑅𝑒 = 13,000 (Figure 2.8e,f), 

evidenced by the similarity of the profiles at 𝑡∗ = 0.4 and 0.7 for the different flow conditions. 

Differences between 𝑅𝑒 = 13,000 and higher flow experiments are also observed in plots of 

mass retention (Figure 2.9). Observed deviations from the model curve are expected to follow 

the same trend if subsurface transport scales directly with bulk Reynolds number. Trends at 𝑅𝑒 = 

27,000 and 55,000 show similar trends, while experiments at 𝑅𝑒 = 13,000 show that 

approximately 50-100% more time was necessary to exchange the same amount of mass with the 

water column (e.g., mass recovery is 0.7 at 𝑡∗~ 0.4 for intermediate and high flows but does not 

reach this value until 𝑡∗~ 0.7 for low flows). This difference is likely due to the emergence of 

large-scale sweep and ejection events by 𝑅𝑒 = 27,000, which enhance mixing from -2.15 ≤ 𝑧∗ 

≤ -0.15 compared to flows at lower 𝑅𝑒. Note that two values at 𝑅𝑒 = 13,000 (𝑥𝑖𝑛𝑗
∗ , 𝑧𝑖𝑛𝑗

∗  = 3.5, -

2.15 and 7.5, -2.15) and one value at 𝑅𝑒 = 27,000 (𝑥𝑖𝑛𝑗
∗ , 𝑧𝑖𝑛𝑗

∗  = 3.5, -2.15) are not plotted due to 

incomplete mixing of the slowly spreading solute plume (i.e., plume width < 𝑑𝑔). Mass retention 

is considered equal to 1 for these experiments. 
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Figure 2.9. Observed mass retention in the streambed compared with upscaled best-fit 

effective dispersion model. (a) 𝑧𝑖𝑛𝑗
∗  = -2.15, (b) 𝑧𝑖𝑛𝑗

∗  = - 0.15. Note the change in 𝑦-axis scales.  

Experiments at 𝑅𝑒 = 13,000 follow a distinct trend from experiments at higher 𝑅𝑒. 

2.4 Discussion 

The open pore geometry of coarse-grained sediment beds allows turbulent transport of both 

momentum and mass across the SWI, thereby coupling surface and porewater flows. This 

coupling modifies the flow structure across the surface-subsurface continuum. Subsurface 

transport appears to be relatively unaffected by flow variability at the 𝑅𝑒 = 13,000, with small-

scale (<0.5𝑑𝑔) recirculations visible only on the lee side of sediment grains. In contrast, 

transport at 𝑅𝑒 = 27,000 and 55,000 is clearly influenced by the presence of intermittent, large-

scale ejections of porewater originating from depths -2.15 ≤ 𝑧∗ ≤ -0.15. This behavior suggests 

that transport at high flows is driven by a shear instability at the SWI, which is known to control 

momentum and mass transport over vegetation canopies. Hyporheic exchange over coarse-
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grained sediment beds may therefore fall within a single framework for shear-driven flows over 

porous media, as posited by Ghisalberti [2009]. 

Porewater hydrodynamics directly controlled solute transport and hyporheic exchange 

over the full range of flowrates tested. Flow visualizations showed that small-scale recirculations 

are increasingly disrupted and large-scale sweep/ejection events grow more frequent and 

energetic with increasing 𝑅𝑒. Reynolds stresses and 𝑓95 both decreased rapidly below the 

interface to stable values by 𝑧∗ = -1.15 for 𝑅𝑒 ≤ 39,000 (Figures 2.3 and 2.6a, respectively), but 

both metrics decreased more gradually to 𝑧∗ ≈ -2.15 for 𝑅𝑒 ≥ 55,000. This suggests that high 

frequency concentration fluctuations are controlled by velocity fluctuations near the SWI.  

𝐶𝑟𝑚𝑠 values peaked deeper in the bed under higher flow rates (Figure 2.6c). The peak 

corresponded to the location where the Reynolds' stresses 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑤′𝑤′̅̅ ̅̅ ̅̅  decayed in the bed, 

meaning turbulent velocity fluctuations did not directly control overall concentration variability 

in porewaters. The location of peak 𝐶𝑟𝑚𝑠 corresponds to the location where longer-period 

concentration fluctuations were observed in flow visualizations and in solute time series (Figure 

2.5, Figure 2.6a). These fluctuations have been observed previously in gravel beds and are 

related to low-frequency pressure oscillations induced by the interaction of free-stream 

turbulence with the streambed [Vollmer et al., 2002; Packman et al., 2004]. The streambed acts 

as a low-pass filter for turbulent velocity and pressure fluctuations, allowing low-frequency 

fluctuations to propagate to greater depths than high frequencies [Breugem et al., 2006]. The 

numerical results of Chandesris et al. [2013] suggest that these fluctuations contribute to 
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porewater advection but not to enhanced mixing within porewaters. This hypothesis is supported 

by flow visualizations, which show evidence of low mixing at the location of peak 𝐶𝑟𝑚𝑠, as well 

as by concentration profiles (Figure 2.8), which show that observed concentrations below 𝑧∗ ≈ -

2.15 are well described by a spatially invariant dispersion coefficient. 

Occurrence of maximum 𝐶𝑟𝑚𝑠 at the SWI under the lowest flow condition, 𝑅𝑒 = 13,000, 

suggests that turbulence did not influence mixing beyond a depth of one grain diameter under 

this condition. Near-zero 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑤′𝑤′̅̅ ̅̅ ̅̅  stresses, as well as results from dispersion model fits 

(Figure 2.8), provide further evidence that subsurface hydrodynamics approach uniform values 

by 𝑧∗ ≈ -1.15 at the low flowrate. Collectively, these results suggest that the bed approached a 

uniform mixing regime in the subsurface under lower water column velocities. In contrast, 

enhanced subsurface mixing was observed under higher stream flowrates. For surface injections 

close to the sensor array, tracer propagated at least 8 cm below the SWI after just 2 s of travel (𝑡∗ 

= 0.1, Figure 2.8b). The rate of propagation slowed substantially beyond 8 cm (𝑧∗= -2.15) 

(Figure 2.8d). A rapid transition to slower, uniform mixing therefore takes place at depth of 2-3 

grain diameters for this flowrate, corresponding to the depth where 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑤′𝑤′̅̅ ̅̅ ̅̅  stresses decay 

to 1% and 8% of peak values in EPIV experiments. This finding indicates that regions of 

enhanced mixing directly correspond to regions of high turbulent stress.  

2.5 Conclusions and implications 

Our results show that high-frequency concentration variability and enhanced mixing are 

directly linked to penetration of turbulence into the hyporheic zone. Turbulent stresses and high-



72 

 

 

frequency concentration fluctuations decay with depth in the bed. Turbulent momentum fluxes 

across the sediment-water interface control mass retention and recovery in porewater. However, 

turbulence also influences solute transport beyond this depth, as low-frequency oscillations 

penetrate deeper into the bed.  

The simple cubic packing of sediments in the present study represents an endmember case, 

whose open geometry allows maximal penetration of coherent flow structures from the water 

column. Streambeds with smaller sediments or closer packing are expected to obstruct 

penetration of these structures, reducing turbulent surface-subsurface flow coupling. Predictive 

relations for turbulent hyporheic exchange must therefore account for physical aspects of the 

streambed in addition to the near-bed flow structure [Ghisalberti and Nepf, 2005; Breugem et al., 

2006; O'Connor and Harvey, 2008; Voermans et al., 2017].  

The link between turbulent stresses and scalar transport is system independent [Tennekes and 

Lumley, 1972], indicating that our findings are applicable to different streambed geometries and 

flowrates provided details. The longstanding pursuit of generalized relations for momentum 

transport in high-permeability streambeds will therefore have direct implications for upscaled 

predictions of hyporheic exchange, given the direct linkage between subsurface momentum and 

mass transport presented here. Our findings point to recent scaling laws that directly incorporate 

shear instabilities at the sediment-water interface [Ghisalberti, 2009; Voermans et al., 2017], 

evidenced by the clear increases in mass exchange that emerge when large-scale ejection events 

are present.  
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Physically-based scaling relationships for turbulent hyporheic mass transport are needed for 

general application of upscaled hyporheic exchange models [Workshop, 1990; Haggerty et al., 

2002; Schumer et al., 2003; Boano et al., 2007; Stonedahl et al., 2012]. A physically-based 

parameterization for turbulent hyporheic exchange is also needed to distinguish this process from 

other solute retention processes that operate at similar timescales, such as exchange with side 

pools, benthic biofilms, and in-stream structures [Uijttewaal et al., 2001; Battin et al., 2003a; 

Ensign and Doyle, 2005; Gooseff et al., 2005; Bottacin-Busolin et al., 2009; Orr et al., 2009; 

Jackson et al., 2013]. Independent parameterization of these mechanisms will improve 

assessment of biogeochemical transformation from whole-stream tracer injection experiments, 

since they will explicitly account for the distinct transport processes and reaction kinetics 

associated with each region of the stream [Jones and Mulholland, 1999; Boano et al., 2014; 

Aubeneau et al., 2015b; Li et al., 2017]. 

2.6 Supporting Information 

Flow visualizations for subsurface solute injections are provided. 
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Figure 2.10. Schematic of injection setup. Solute was heated to neutral buoyancy prior to 

injection. A custom flow dampener (inverted vortex tube with) was installed in-line to 

minimize pulsation from the peristaltic pump. 
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CHAPTER 3 

Effects of turbulent hyporheic mixing 

on reach-scale solute transport 
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ABSTRACT 

Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both 

hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled 

by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of 

stream reaches. We used a process-based particle-tracking model to simulate local- and reach-

scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth 

transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent 

transport at the sediment-water interface, were fit to steady-state subsurface concentration 

profiles observed in laboratory experiments. The mixing profile with enhanced interfacial 

transport better matched the observed concentration profiles and overall mass retention in the 

streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a 

stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes 

exchanged into the shallow subsurface to have travel times similar to the water column. This 

extended the exponential region of the in-stream solute breakthrough curve, and delayed the 

onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater 

velocities. Slopes of observed power-law tails were greater than those predicted from stochastic 

transport theory, and also changed in time. In addition, rapid hyporheic transport velocities 

truncated the hyporheic residence time distribution by causing mass to exit the stream reach via 

subsurface advection, causing strong exponential tempering in the in-stream breakthrough curves 

at the timescale of advective hyporheic transport through the reach. These results show that 
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strong turbulent mixing across the sediment-water interface violates the conventional separation 

of surface and subsurface flows used in current models for solute transport in rivers. Instead, the 

full distribution of flow and mixing over the surface-subsurface continuum must be explicitly 

considered to properly interpret solute transport in coarse-bed streams. The results presented here 

support upscaled numerical solutions based on the particle tracking method, which directly 

represents solute transport in both the stream and the hyporheic zone. Field application will 

require detailed observations of flow and transport across the stream-hyporheic continuum, as 

well as development of new upscaled theory that respects the strong stream-hyporheic coupling 

demonstrated here. 
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3.1 Introduction 

Transport and transformation in the hyporheic zone is closely linked both to the structure of 

stream sediments and to streamflow. Sediment properties such as grain size and surface 

chemistry influence habitat for microbial biofilms, which are a primary driver of subsurface 

reactions, and hyporheic residence times, and they also control the opportunity for 

biogeochemical transformation [Boulton et al., 1998; Battin et al., 2007; Battin et al., 2016]. 

Streambed topography and permeability interact with stream and groundwater flow to set the rate 

and timing of solute transport in the hyporheic zone. The balance between residence timescales 

and reaction timescales exerts primary control over integrated transformation rates in river 

networks [Zarnetske et al., 2011; Harvey et al., 2013]. Thus, an accurate, physically-based 

description of hyporheic exchange rates and residence time distributions is needed to make 

generalized predictions of solute retention and transformation in streams and rivers. 

Considerable research over the last 30 years has shown that hyporheic exchange is generally 

controlled by advective porewater flows induced by stream features such as dunes, bars, and 

meanders [Boano et al., 2014]. However, nearly all available models consider the stream flow to 

be fully turbulent but hyporheic flows to be laminar, and all models of advective hyporheic 

exchange (pumping) apply Darcy flow assumptions in the subsurface [Cardenas and Wilson, 

2007; Marion et al., 2008; Karwan and Saiers, 2012]. A small number of studies have shown the 

hyporheic exchange is also induced by turbulence that propagates across the SWI [C P 

Richardson and Parr, 1988; Nagaoka and Ohgaki, 1990; Packman et al., 2004; Voermans et al., 
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2017]. Despite some progress integrating this information into models for upscaled hyporheic 

exchange and associated solute transport [Nagaoka and Ohgaki, 1990; Higashino et al., 2009; 

Boano et al., 2011], full integration has remained a challenge due to an incomplete 

understanding of turbulent interfacial momentum transport. Sediment permeability and in-stream 

turbulent energy together control the extent to which turbulent eddies propagate across the SWI 

[Breugem et al., 2006; Manes et al., 2012]. Surface and subsurface flows become increasingly 

coupled at high flowrates, particularly for flows over high-permeability sediment beds [Manes et 

al., 2011]. Interfacial momentum coupling modifies the flow structure across the surface-

subsurface continuum by increasing subsurface velocities, amplifying turbulent shear and 

vertical stresses, and shifting the peak in turbulent energy closer to the SWI [Voermans et al., 

2017]. The resulting interfacial exchange rates can increase by orders of magnitude beyond 

advective pumping [O'Connor and Harvey, 2008]. However, turbulent energy diminishes 

exponentially with increasing depth in the streambed, limiting the thickness of the turbulent 

interfacial layer to several grain diameters [Vollmer et al., 2002; Breugem et al., 2006; Manes et 

al., 2009].  

These processes are known to fundamentally violate assumptions of all available models for 

upscaled solute transport in rivers, as current models rely on separation of velocity scales and 

associated travel time scales between the stream and hyporheic zone [Boano et al., 2007; Boano 

et al., 2014]. In particular, the combination of rapid interfacial transport and high porewater 

velocities in the turbulent portion of the hyporheic zone means that the surface and surbsurface 

flows are fully hydrodynamically coupled [Manes et al., 2009; Blois et al., 2012; Blois et al., 
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2013], and that downstream transport within the hyporheic zone will occur at velocities similar 

to the stream.  This violates the assumption of separation of in-stream and hyporheic timescales 

used in both classical hyporheic transport models (e.g., Transient Storage Model) and more 

recent models based on stochastic transport theory (e.g., Continuous-Time Random Walk, Time-

Fractional Advection-Dispersion Equations, Multirate Mass Transfer) [Haggerty et al., 2000; 

Schumer et al., 2003; Boano et al., 2007]. However, it is unclear how turbulent hyporheic 

exchange impacts overall mass retention at the scale of stream reaches, given that the turbulent 

portion of the hyporheic zone is often a small fraction of the overall streambed depth. 

Assessment of these processes from integrated measurements of solute transport (i.e., 

breakthrough curves) is further confounded by the presence of retention mechanisms active at 

similar timescales, such as slow in-stream velocities in the benthic boundary layer, velocity 

variations around cobbles and other obstructions, and lateral exchange with side pools 

[Uijttewaal et al., 2001; Battin et al., 2003a; Ensign and Doyle, 2005; Gooseff et al., 2005; 

Bottacin-Busolin et al., 2009; Orr et al., 2009; Jackson et al., 2013].  

Recently, controlled experimental investigations using new in situ measurement approaches 

have provided direct observations of turbulent porewater flow and associated interfacial solute 

transport (Chapter 2) [Blois et al., 2012]. New theoretical and modeling approaches are needed 

to assess the effect of enhanced turbulent hyporheic exchange on integrated transport at the reach 

scale. To this end, we used a process-based particle tracking model to simulate mass transport in 

a stream with a coarse sediment bed. We identified profiles of vertical hyporheic mixing from 

the steady-state subsurface concentration distributions observed in Chapter 2, then used these 
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profiles to simulate upscaled in-stream solute transport. Upscaled results were interpreted in 

terms of breakthrough curves, particle residence time distributions and Lagrangian statistics of 

the ensemble mass transport. This information was then used to identify specific transport 

regimes and specific features of concentration breakthrough curves associated with turbulent 

exchange. These results define the range of conditions over which subsurface turbulence must be 

considered in upscaled transport models, and aids interpretation of field experiments that infer 

hyporheic residence times from in-stream breakthrough curves. Ultimately, this work will inform 

proper selection of reduced-order (1-D) transport models by clarifying linkages between in-

stream and subsurface residence time distributions that violate the independence assumptions of 

current upscaled models. 

3.2 Methods 

We used a stochastic particle-tracking model to simulate downstream transport at the 

laboratory and the reach scales. The 2-D model discretizes tracer into a large number of 

infinitesimal mass particles, whose ensemble motion represents the evolution of the tracer plume.  

Particle motion at each time step is specified by a 2-D Langevin equation: 

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + 𝑢𝑥(z)Δ𝑡 

𝑧(𝑡 + Δ𝑡) = 𝑧(𝑡) +
𝜕𝐾𝑧(𝑧)

𝜕𝑧
Δ𝑡 + 𝜉√2𝐾𝑧(z)Δ𝑡 

(3.1) 

 

where 𝑥(𝑡) is downstream position at time 𝑡, 𝑦 is vertical position, and Δ𝑡 is a unit time step.  

𝑢𝑥(z) and 𝐾𝑧(z) represent vertically-varying fields of longitudinal velocity and vertical mixing 

intensity, respectively, and 𝜉 is an independent random variable sampled from the standard 
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normal distribution. Equation (3.1) is a discrete stochastic representation of the 2-D advection-

dispersion equation (ADE):  

𝜕𝐶

𝜕𝑡
+ 𝑢𝑥

𝜕𝐶

𝜕𝑥
=

𝜕

𝜕𝑧
(𝐾𝑧

𝜕𝐶

𝜕𝑧
). 

(3.2) 

 

Equation (3.2) is the conventional formulation for 2D (downstream-vertical) transport in 

rivers but is only valid for ensemble motion under conditions where the central limit theorem 

applies, which is not always the case in rivers [Boano et al., 2007]. In particular, Equation (3.1) 

provides a consistent framework for simulating the ensemble motion of solute mass subject to 

co-varying velocities and mixing intensities [Li et al., 2017].  

3.2.1 Model formulation 

We simulated transport in a stream flowing over and through a coarse-grained streambed. The 

entire stream-subsurface domain is considered as a flow continuum. The influence of stream 

sediments on particle motion is captured by the vertical variability of the velocity and mixing 

profiles. Velocities were simulated at three different flow conditions, which are reported in Table 

3.1) Velocity profiles 𝑢𝑥(z) at each flow condition were taken directly from recent flume 

experiments with water column height 𝐻= 12.3 cm and a bed that consisted of 4-cm spherical 

sediments in a simple cubic packing to a depth of depth of 𝑑𝑏𝑒𝑑 = -22.4 cm (Chapter 2). These 

values vary slightly from the values reported in Chapter 2 because the values reported here are 

double-averaged over multiple velocity profiles in space [Nikora et al., 2001]. Discharge was 

directly measured in flume experiments. Reynolds numbers are calculated as 𝑅𝑒 = 𝐻𝑈̅𝑠/𝜈, 

where 𝑈̅𝑠 is mean water column velocity, and the kinematic viscosity, 𝜈 = 10-6 m2/s. 
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Vertical mixing profiles 𝐾𝑧(z) also span the surface-subsurface continuum. Vertical mixing 

profiles in the water column were determined from experimental observations by invoking the 

Reynolds analogy, which assumes turbulent momentum transport is equivalent to local eddy 

diffusivity [Tennekes and Lumley, 1972]. Eddy diffusivities were calculated from profiles of 

Reynolds-decomposed velocities [Blois et al., 2012] according to standard procedures [Tennekes 

and Lumley, 1972; Fischer et al., 1979].  

  Mixing rates near the interface were determined by fitting modeled concentrations to 

concentrations measured experimentally from steady-state streambed injections (Chapter 2). The 

minimum vertical mixing rate in the streambed was assumed to be governed by dispersion in the 

porous medium [Bear, 1979]. The associated dispersion coefficient 𝐾𝑝 was determined by fitting 

the 1-D advection-dispersion equation to subsurface solute injections (Chapter 2). Longitudinal 

mixing was assumed to be insignificant relative to downstream advection, which is a valid 

assumption for the flow distribution considered here [Fischer et al., 1979]. Note that this model 

explicitly resolves longitudinal dispersion at the scale of the stream-subsurface continuum as an 

outcome of Equations (3.2), so only local longitudinal diffusion in the water column and 

dispersion in the porewater are omitted. 

Table 3.1. Simulation parameters calculated from experiments in Chapter 2. 
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𝑹𝒆 42,000 21,000 11,000 

𝑯 (cm) 12.3 

𝒅𝒃 (cm) -22.4 

𝑸 (L/s) 8.8 4.4 2.2 

𝑼̅𝒔 (cm/s) 34.0 17.4 8.8 

𝑼𝒑 (cm/s) 1.85 0.63 0.29 

𝑼̅𝑯𝒁 (cm/s) 2.1 0.8 0.3 

𝑼̅𝒔/𝑼̅𝑯𝒁 16.5 20.5 30.1 

𝑲𝒑 (cm2/s) 0.34 0.20 0.15 

We assessed two different hypothesized profiles for 𝐾𝑧 in the hyporheic zone (Figure 3.1). 

First, we hypothesized that profiles of vertical mixing follow the hyporheic velocity profiles 

observed in high-permeability streambeds, which generally show exponential decay with depth 

[Ruff and Gelhar, 1972; Zagni and Smith, 1976; Mendoza and Zhou, 1992]. For this model, we 

assume that vertical mixing rate decays monotonically into the streambed and exponentially from 

the measured eddy diffusivity at the SWI, 𝐾𝑧(0), to the minimum value of 𝐾𝑝 at depth: 

𝐾𝑧(𝑧 < 0) = 𝐾𝑝 + (𝐾𝑧(0) − 𝐾𝑝)𝑒𝛼𝑧 . (3.3) 

 

where 𝛼 is the rate of exponential decay. Hereafter, we refer to this simulation case as 

“monotonic decrease.” 

Second, we hypothesized that mixing is enhanced by turbulence at the SWI, consistent with 

profiles of turbulent stresses measured in high-permeability streambeds [Breugem et al., 2006; 

Manes et al., 2009; Manes et al., 2011; Blois et al., 2013; Li et al., 2017]. For this model, we 
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assume enhanced transport at the SWI, 𝐾𝑒, followed by an exponential decay from the SWI to 

𝐾𝑝: 

𝐾𝑧(𝑧 < 0) = 𝐾𝑝 + (𝐾𝑒 − 𝐾𝑝)𝑒𝛼𝑧 (3.4) 

 

We refer to this simulation case as “enhanced interfacial transport.” For this case, 𝐾𝑒 was 

allowed to freely vary to fit the observed profiles.  

 
 

Figure 3.1. Left: Conceptual profile of average longitudinal velocity 𝑢𝑥(𝑧). Velocities were 

measured from experiments in Chapter 2. 𝑢𝑝 is defined as the porewater velocity in 

streambed, where flows are not altered by surface-subsurface flow coupling. Right: 

Hypothesized profiles of vertical mixing, 𝐾𝑧(𝑧). The sediment water interface (SWI) and 𝑧 =
0 are defined as the top of the upper-most sediment grains. Profiles decay exponentially 

below the SWI. 𝐾𝑒 is the mixing rate at the SWI for profiles with enhanced mixing, and 𝐾𝑝 is 

the porewater mixing rate measured from Chapter 2 experiments. 

The particle tracking model was parameterized with each hypothesized profile, with the 

objective of finding model parameters that best fit observations of time-averaged concentration 

profiles from steady-state tracer injection experiments (Chapter 2). Two injection locations were 

simulated for each profile, matching conditions used in experiments: a “surface injection” at 
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(𝑥, 𝑧) = (0,-0.6) cm, and a “subsurface injection” at (𝑥, 𝑧) = (0,-8.2) cm. Experimental and 

simulated concentrations were measured at a downstream location 𝑥 = 47.6 cm and at elevations 

of 𝑧 = -0.6, -4.4, -8.2, -12.0, -15.8, and -19.6 cm.  

Solute mixing was simulated with one hundred virtual particles and timesteps of Δ𝑡 = 0.01s. 

Simulations at smaller Δ𝑡 did not alter model results. Boundary conditions at 𝑧 = 𝑑𝑏 and 𝑧 = 𝐻 

were fully reflective. The objective fitting function was chosen to match both subsurface 

concentrations and the overall fraction of mass retained in the bed, according to the following 

equation:  

𝑆𝑆𝐸 =  ∑ (∑ (𝐶𝐸,𝑖,𝑧 − 𝐶𝑀,𝑖,𝑧)
2

+ 2
𝑧

(𝑓𝐸,𝑖 − 𝑓𝑀,𝑖)
2

)
𝑖=1,2

 (3.5) 

Here, 𝑆𝑆𝐸 is the sum of squared errors, 𝐶𝑋,𝑖,𝑧 is the experimental (𝐸) or modeled (𝑀) solute 

concentration measured at elevation 𝑧; and 𝑓𝑋,𝑖 is the fraction of injected mass retained in the 

streambed. These fits were performed for all tracer injection locations, 𝑖, used in the 

experiments. Inclusion of 𝑓𝑋,𝑖 in (3.5) ensured that model fits respected observed mass exchange 

with the water column, and this term was given a weighting factor of 2 to ensure that mass 

exchange was weighted greater than any individual concentration measurement.  

Model fits were used to calculate the mixing rate in the region of enhanced turbulent 

porewater transport 𝐾̅𝐼, defined as the mean mixing rate between the SWI and the maximum 

depth of enhanced mixing 𝑧𝑖. This depth was defined as the location where the mixing rate was 

1% greater than the underlying porewater dispersion 𝐾𝑝: 
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𝐾𝑧(𝑧𝑖)

𝐾𝑒 − 𝐾𝑝
= 0.01 (3.6) 

3.2.2 Reach-scale simulations 

Pulse injections of a conservative solute were simulated by particle tracking using each of the 

two hypothesized 𝐾𝑧 profiles: the monotonic decrease into the bed, and the enhanced interfacial 

transport. Two additional simulations were performed for comparison: a uniform hyporheic 

mixing rate (𝐾𝑧<0 = 𝐾𝑝), and an impermeable streambed. Note that no monotonic model fit was 

made for the low flowrate, since interfacial mixing rates were nearly equal to 𝐾𝑝 at this flowrate, 

making the monotonic decrease profile equivalent to the profile used for the uniform hyporheic 

mixing model.   

For each simulation, 192,000 particles were released uniformly over the water column at 𝑥 = 

0 and monitored for 200,000 s. Streambed depth was set at 𝑑𝑏 = 1 m to avoid depth constraints 

on the porewater velocity profile. Two breakthrough curves (BTCs) were determined as the 

temporal evolution of the average water-column concentration in a 20-m-long streambed section 

centered at 250 m and 1 km downstream. Lagrangian statistics of plume transport (mean and 

variance) were also calculated directly from the space-time distributions of virtual tracer 

particles.  

Simulation results were used to calculate several metrics associated with solute mixing and 

transport. The advective hyporheic timescale was taken as the time required to traverse a 

characteristic longitudinal distance 𝐿 while traveling at the mean porewater velocity 𝑈̅𝐻𝑍: 
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𝜏𝑇 = 𝐿/𝑈̅𝐻𝑍. (3.7) 

The timescale of vertical hyporheic mixing, 𝜏𝑏𝑒𝑑, was defined as:   

𝜏𝑏𝑒𝑑 = 𝑑𝑏
2/𝐾̅𝐻𝑍. (3.8) 

A streambed depth 𝑑𝑏 = 1 m ensured that the zone of interfacial mixing was limited to a small 

proportion of the bed, and 𝐾𝑝~ 𝐾̅𝐻𝑍. This choice allowed for a single 𝜏𝑏𝑒𝑑 to be used for the 

analysis, chosen from the best-fit profile with enhanced interfacial transport. 

An outcome of the normally-distributed noise prescribed for vertical mixing (Equation (3.2)) 

is that a particles entering an unconstrained streambed (i.e., infinite length and depth) will return 

to the SWI at time 𝑡 with probability 𝑝(𝑡)~𝑡−1/2 [Feller, 2008; Aquino et al., 2015]. If (1) 

velocity scales and associated travel time scales between the stream and hyporheic zone are 

assumed to be sufficiently separated, and (2) vertical mixing in the streambed occurs at a 

uniform rate 𝐾̅𝐻𝑍, the residence time distribution (RTD) for the study reach approaches this 

return-time distribution. Consequently, breakthrough curves (BTCs) of in-stream concentrations 

will be proportional to 𝑡−1/2 at late times for a streambed that is dominated by a uniform mixing 

regime in the subsurface (i.e., 𝐾𝑝~ 𝐾̅𝐻𝑍).   

The timescales associated with the finite reach length and bed depth impose constraints that 

modify the RTD for the reach. The advective hyporheic timescale corresponds to the longest 

time a particle is expected to traverse the reach and thus represents a truncation of the RTD at 𝜏𝑇 . 

Further, 𝜏𝑏𝑒𝑑 represents the slowest mixing timescale in the domain and thus is a predictor of the 

Gaussian setting timescale, defined as the time at which a longitudinally spreading tracer will 
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evolve according to Fick’s Law [Fischer et al., 1979; Zhang and Meerschaert, 2011]. The 

combination of these behaviors suggests that solute RTDs at the reach scale will follow 

𝑝(𝑡)~𝑡−1/2 at late times with exponential decay (tempering) after the minimum of 𝜏𝑇  and 𝜏𝑏𝑒𝑑.  

 

Simulation results were compared with predictions from both the fractional-order mobile-

immobile model (FMIM) [Schumer et al., 2003] and the ADE. The FMIM is a reduced-order (1-

D in space) analytical model that parses the stream into a mobile (water column) zone and an 

immobile (hyporheic) zone where mass is assumed to be motionless. Immobile mass also is 

assumed to randomly and independently sample a wait-time from a power-law distribution 

𝑝(𝑡)~𝑡−𝛾 before it returns to the mobile domain. Asymptotic solutions for the FMIM predict that 

concentrations in the water column at late times will follow a power law with 𝐶(𝑡) ∝ 𝑡−(1+𝛾), or 

𝐶(𝑡) ∝ 𝑡−3/2. To compare to this expected BTC slope, simulated concentrations were calculated 

as: 

 𝑚 = Δ(log 𝐶)/Δ(log 𝑡)  (3.9) 

Calculated values of 𝑚 were then smoothed using a 40-point moving average algorithm. 

ADE model predictions were used to evaluate the rate at which the plume transitioned to a 

Fickian transport regime, in which the mean plume distance scales linearly with time. 

Additionally, the coefficient of longitudinal Taylor dispersion 𝐾𝐿 scales with longitudinal plume 

variance, 𝜎2, as [Elder, 1959]: 
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𝐾𝐿 = 𝜎2/2𝑡, (3.10) 

meaning the variance also scales linearly with time according to ADE theory. Values for 𝐾𝐿 were 

estimated in each simulation after the trends had transitioned to a regime of linear scaling. 

3.3 Results 

3.3.1 Hyporheic mixing profiles 

Experimental and modeled concentration profiles are shown for each flowrate and mixing 

profile in  hyporheic mixing profiles for each each flowrate and mixing profile in Figure 3.2. The 

monotonic profile did not capture the enhanced mass exchange across the SWI. Attempts to 

better match concentrations near the SWI resulted in under-predictions of overal mass retention. 

As a result, best fits for this model only reasonably described porewater solute concentrations at 

depth in the bed (𝑧 >-8 cm, and over-predicted concentrations near the SWI.   

Results improved substantially in simulations using the enhanced interfacial transport profile 

Model simulations better matched the observed concentration profiles (Figure 3.2), particularly 

near the SWI. The decay rate of mixing in the bed, 𝛼was similar for Re = 21,000 and 42,000, 

but increased for the Re = 11,000 case, indicating a thinner zone of enhanced mixing under the 

lowest flowrate. 
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Figure 3.2. Observed and simulated steady-state tracer injection concentration profiles in the 

hyporheic zone.  
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Table 3.2. Model fits of 𝐾𝑒 and 𝛼 to experimental results. Additional parameters calculated 

from these fits are also reported. Experimental results are from Chapter 2.  

𝑹𝒆 -- 42,000 21,000 11,000 

𝑺𝑺𝑬 
Monotonic 0.082 .157 -- 

Enhanced 0.047 0.064 0.156 

𝜶 

(1/cm) 

Monotonic 0.11 0.09 -- 

Enhanced 0.74 0.75 2.00 

𝑲𝒛=𝟎  

(cm2/s) 

Monotonic, 𝐾𝑧(0) 1.55 0.71 -- 

Enhanced, 𝐾𝑒 9.66 5.00 3.75 

𝒇𝒔𝒖𝒓𝒇𝒂𝒄𝒆 

Experiment 0.10 0.05 0.08 

Monotonic 0.23 0.21 -- 

Enhanced 0.15 0.10 0.10 

𝒇𝒔𝒖𝒃𝒔𝒖𝒓𝒇𝒂𝒄𝒆 

Experiment 0.72 0.78 0.61 

Monotonic 0.84 0.60 -- 

Enhanced 0.85 0.73 0.87 

𝒛𝒊 (cm) 
Monotonic -41.9 -51.2 -- 

Enhanced -6.2 -6.1 -2.3 

𝑲̅𝒊 (cm2/s) 

Monotonic 0.60 0.31 -- 

Enhanced 2.04 1.06 0.42 

Uniform 0.34 0.20 0.16 

𝑲̅𝑯𝒁 (cm2/s) 

Monotonic 0.45 0.26 -- 

Enhanced 0.47 0.27 0.17 

Uniform 0.34 0.20 0.15 

𝝉𝒃𝒆𝒅 = 𝒅𝒃
𝟐/𝑲̅𝑯𝒁 

(104 s) 
-- 2.1 3.8 5.7 

𝝉𝑻 = 𝑳𝑼̅𝑯𝒁 

(104 s) 

L = 250 m 1.4 4.0 11.9 

L = 1 km 5.4 15.9 47.6 
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3.3.2 Reach-scale simulations 

Simulated breakthrough curves (BTCs) for the monotonic and enhanced interfacial transport 

mixing models are shown for downstream distances of 250 m and 1 km in Figure 3.3. Several 

similar features are observed in each BTC. 

1. Distinct tracer peak. 

2. Exponential decrease in tracer concentration after the peak (note that these appear as a 

convex curve in the log-log plots).  

3. Power law tailing over a finite interval (appear as straight lines in the log-log plot). 

4. Exponential tempering of the power-law at late time. 
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Figure 3.3.  Simulated breakthrough curves for monotonic decrease model (medium hue), 

enhanced interfacial transport model (dark hue), and uniform hyporheic mixing (light hue). 

Note that axes of each plot are scaled differently to most clearly illustrate the shape of each 

breakthrough curve. 

Arrival and decay of the concentration peak did not vary predictably with downstream 

distance, particularly at early times. This behavior is illustrated in the sequence of BTC arrival at 

𝑅𝑒 = 42,000. Arrival order at the 250 m location was: uniform hyporheic mixing model, 

enhanced interfacial transport model, monotonic decrease model. By 1 km this order had 
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changed to: enhanced interfacial transport model, uniform hyporheic mixing model. Similar 

nonlinear trends were also observed in values for concentration peaks. Concentrations decayed 

most rapidly at early times in simulations with uniform hyporheic mixing (Figure 3.4, light 

symbols), but these decay rates slowed after 1 h. Asymptotic peak concentrations directly 

corresponded to the average rate of interfacial mixing between 𝑧 = 0 and 𝑧𝑖. The early-time 

trends are attributed to mass just below the SWI being rapidly flushed back into the water 

column. This result is consistent with the vertical concentration profiles, which showed depleted 

interfacial concentrations in simulations with enhanced interfacial transport.  

 
Figure 3.4. Peak concentration of each plume. Colors correspond to plots in Figure 3.3. 

Values for middle and low flows are shifted by a factor of 2 to emphasize patterns. 
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The exponential and power-law BTC tailing regimes also varied with mixing profile and 

flowrate. BTCs for simulations with a uniform mixing profile transitioned to power-law tailing 

earlier than the monotonic decrease and enhanced interfacial transport models. For example, the 

250-m BTC at 𝑅𝑒 = 42,000 exhibited power-law tailing at 𝑡 ≈ 1400-7200 s for the uniform 

mixing model, while the monotonic decrease and enhanced interfacial transport models showed 

tailing at 𝑡 ≈ 2600-7200 s (Figure 3.3).  

Hyporheic RTDs for each simulation matched predictions, exhibiting a power-law tail with 

𝑝(𝑡)~𝑡−1/2 and exponential tempering after 𝜏𝑏𝑒𝑑 (see Supporting Information). However, 

calculated BTC tail slopes differed from the predicted scaling of 𝑚 ∝ 𝑡−3/2 (Figure 3.5).  The 

BTC tails for each mixing model converged to the same slope at 𝐿 = 250 m (Figure 3.5a,c) 

before 𝜏𝑏𝑒𝑑 or 𝜏𝑇 was reached. Slopes converged at 𝑡 ≈ 𝜏𝑏𝑒𝑑 or not at all for BTCs at 𝐿 = 1 km 

(Figure 3.5b,d).   
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Figure 3.5. Tail slopes 𝑚 for high- and low-flowrate BTCs reported in Figure 3.3. Dashed line 

represents the predicted asymptotic scaling, 𝐶(𝑡) ∝ 𝑡−3/2. A tail slope of zero signals the 

passing of peak concentration.  

A final exponential tempering to a regime of rapidly decaying concentrations was observed 

for all BTCs. The nature of the tempering was determined by the truncation timescale associated 

with the longitudinal hyporheic velocity deep in the bed,𝜏𝑇, and the characteristic timescale for 

vertical mixing over the full depth of the streambed, 𝜏𝑏𝑒𝑑. Truncation results in a sharp 

exponential decay in the BTC at 𝑡 = 𝜏𝑇 (Figure 3.3a,c), as well as a sharp decay in tail slope 

before 𝑡 = 𝜏𝑇 (Figure 3.5a,c).  This behavior can be seen in the 𝑅𝑒 = 21,000 and 42,000 
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simulations for reach length 𝐿 = 250 m (Figure 3.3a,c). This represents a true truncation of the 

power-law BTC tail, as there is a sharp cutoff at the maximum residence time set by advective 

longitudinal washout of tracer mass from the hyporheic zone (𝜏𝑇). In contrast, Gaussian setting 

(transition to a regime of Fickian transport) occurs when tracer fully samples the velocity 

distribution over the entire stream-hyporheic continuum, i.e., the time at which the tracer 

becomes well-mixed between the stream and the bed (𝜏𝑏𝑒𝑑). Gaussian setting manifests as slower 

exponential tempering in the BTCs for the middle- and low-flow conditions at 𝐿 = 1 km (Figure 

3.3d,f) at 𝜏𝑏𝑒𝑑 ≈ 38,000 s and 57,000 s, respectively.  

The dominant process that controls tempering of the power-law BTC tail can be assessed as 

the ratio of the advective truncation and Gaussian setting timescales,  𝜏𝑇/𝜏𝑏𝑒𝑑. Cases with  𝜏𝑇 ≫

 𝜏𝑏𝑒𝑑 show broad exponential tempering associated with Gaussian setting (𝜏𝑇/𝜏𝑏𝑒𝑑 = 3.1 and 5.9, 

respectively, for the BTCs that exhibit slow tempering in Figure 3.3d,f). Conversely, cases with  

𝜏𝑇 ≪  𝜏𝑏𝑒𝑑 show much steeper exponential BTC tempering consistent with a truncation in the 

hyporheic residence time distribution (Figure 3.3a,c). Intermediate cases show exponential 

tempering of the BTC tail at 𝜏𝑏𝑒𝑑 followed by a steeper exponential at 𝜏𝑇 (Figure 3.3b,e, 

tempering at 57,000 s and 21,000 s, with 𝜏𝑇/𝜏𝑏𝑒𝑑 = 2.6 and 2.1, respectively).  

Distinct transport regimes are also visible in the Lagrangian plume statistics (Figure 3.6). 

Mean velocities were nearly identical and linear early after the pulse injections, and then slowed 

nonlinearly after several hundred seconds. Mean velocities continued to decrease until they 

reached an asymptotic scaling regime that scaled approximately as 𝑈̅𝑠 ~ 𝑡0.9. This regime was 
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followed by a transition to linear (𝑈̅𝑠 ~ 𝑡1) scaling at 𝑡 ≈ 𝜏𝑏𝑒𝑑 (Figure 3.6a). The transition to 

linear scaling was quickest for the enhanced interfacial transport profile, with a slightly later 

transition for the monotonic decrease and uniform mixing profiles. The onset of this transition 

also decreased increased with increased 𝑅𝑒. 

 
Figure 3.6. Trends in plume mean (a) and variance (b) for simulations at high (blue) and low 

(green) flows. Enhanced interfacial transport model (dark hue). Monotonic model (middle 

hue). Uniform hyporheic mixing model (light hue). The middle flowrate, not shown for 

clarity, exhibited trends in between the low and high flow cases. Both trends show a transition 

to nonlinear to linear scaling ( 𝑡1) at 𝑡 ≈ 𝜏𝑏𝑒𝑑; linear scalings are provided in each plot for 

comparison. Note that a greater y-intercept on a log-log plot corresponds to a greater slope for 

linear trends. Late-time trends in (b) that are shifted upward therefore have a greater 

longitudinal dispersion coefficient, per Equation (3.10).     

Similarly, relaxation to 𝜎2 ∝ 𝑡 scaling occurred earliest for 𝑅𝑒 = 42,000 simulations, and 

increased with decreasing flowrate. The quicker transition is due to tracer mass more rapidly 

sampling all transport timescales for this mixing profile, indicated by a smaller vertical mixing 

timescale 𝜏𝑏𝑒𝑑 at the higher flowrate (Table 3.2, Figure 3.6b). Calculated values for longitudinal 

dispersion 𝐾𝐿 were greatest for simulations with the enhanced interfacial transport mixing profile 
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(Table 3.3, Figure 3.6b). This result was expected because this profile shows the greatest 

variability in mixing rates. Further, it shows that turbulent hyporheic mixing ultimately results in 

greater longitudinal spreading of a tracer plume. The smoother transition in mixing rates from 

the water column to the hyporheic zone reduced the variability in mixing rates for the monotonic 

profile, compared to the uniform mixing and enhanced interfacial transport models. As a result, 

𝐾𝐿 values were lowest for the monotonic decrease model.  

Table 3.3. Longitudinal dispersion coefficients calculated from Equation (3.10). 

𝑹𝒆 -- 42,000 21,000 11,000 

𝐾𝐿  (m
2/s) 

Uniform 19.5 15.1 5.6 

Monotonic 15.1 6.8 -- 

Enhanced 37.2 22.0 10.6 

3.4 Discussion 

Turbulent coupling between surface and porewaters creates a localized zone of enhanced 

hyporheic mixing immediately below the SWI. We show that the spatial variability of mixing 

within this zone directly controls concentrations and interfacial exchange rates at the grain scale, 

as well as downstream transport at the reach scale (> 1 km). Vertical concentration profiles 

observed in 0.5-m solute injection experiments were best described by a profile with enhanced 

mixing intensity at the SWI and exponential decay to uniform mixing deep in the hyporheic 

zone.  

Particle-tracking simulations show that several processes control downstream solute transport. 

Enhanced mixing at the SWI results in faster solute exchange between the water column and the 
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shallow hyporheic zone (i.e., 𝑧𝑖 ≤ 𝑧 ≤ 0). Solute that enters this zone is either rapidly flushed to 

the water column or delivered to deeper, slower moving porewaters. Sampling of vertical mixing 

rates is therefore highly variable for this profile, resulting in nonlinear trends for the arrival of 

the plume peak and plume mean velocity (Figure 3.3 and, Figure 3.6, respectively). Simulations 

with higher interfacial turbulence also exhibited a later-time transition to a power-law scaling 

regime (Figure 3.3). A necessary condition for a stream BTC to exhibit power-law scaling is that 

transported mass must sample a broad range of time scales [Haggerty et al., 2000; Haggerty et 

al., 2002; Schumer et al., 2003; Berkowitz et al., 2006]. A longer transition to power-law scaling 

implies that tracer samples a distribution of hyporheic velocities overlaps with in-stream 

velocities, resulting in a continuous distribution of transport timescales. Mass that enters the thin 

zone of enhanced mixing (between the SWI and 𝑧𝑖) returns to the mobile zone with high 

probability, and longer times are required for mass to adequately sample the slow velocities 

associated with deeper hyporheic water. In contrast, simulations with uniform subsurface mixing 

retained more mass near the SWI, allowing mass to sample slow-moving hyporheic waters more 

frequently at earlier times.   

Late-time BTC concentrations generally did not follow the scaling predicted from the 

fractional mobile-immobile model (FMIM), which links the local heavy-tailed hyporheic 

residence time distribution (RTD) to downstream transport [Schumer et al., 2003]. Although 

RTDs in the streambed scaled with 𝑡−1/2 over a broad range of times (see Supporting 

Information), BTCs did not scale with 𝑡−3/2 over these times according to the FMIM. Tail slopes 
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only approached a power law for observations at 𝑡 < 𝜏𝑏𝑒𝑑 (the Gaussian setting time) and 𝑡 < 𝜏𝑇 

(the truncation time associated with tracer mass exiting the reach by downstream advection 

through the hyporheic zone). The ratio 𝜏𝑇/𝜏𝑏𝑒𝑑 also determined the shape of late-time BTC 

tempering.  

Application of the FMIM and other stochastic models is therefore limited in high permeability 

streambeds. The expected duration of  asymptotic (power-law) tailing is limited by reductions in 

both the advective truncation timescale, 𝜏𝑇, due to higher longitudinal hyporheic velocities, and 

the Gaussian setting time, 𝜏𝑏𝑒𝑑, due to more rapid vertical mixing within the bed. In addition, 

high hyporheic velocities result in the migration of mass a substantial distance downstream in the 

hyporheic zone, which results in correlations between transport events in this zone [Li et al., 

2017]. Events therefore cannot be treated as independent and identically distributed, which is a 

commonly-invoked assumption in the derivation of stochastic transport models for hyporheic 

exchange [Boano et al., 2014].  This requires further generalization of stochastic models to 

capture the pre-asymptotic solute transport behavior observed at earlier times in coarse-bed 

streams. Recent numerical and groundwater studies have confirmed that velocity decorrelation 

timescales provide key information for determining pre-asymptotic plume evolution [Kang et al., 

2011; Kang et al., 2015]. Spatial Markov models have successfully utilized velocity correlation 

information to predict pre-asymptotic transport [Le Borgne et al., 2008; de Anna et al., 2013; 

Bolster et al., 2014; Sund et al., 2015; Dentz et al., 2016]. This type of approach may be useful 

for predicting early time transport behavior for highly-permeable riverbeds if the timescales of 

velocity decorrelation in the hyporheic zone are properly determined.  
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The final decay in BTC concentrations is also controlled by 𝜏𝑇/𝜏𝑏𝑒𝑑. Gaussian setting, 

marked by slow exponential tempering, is the dominant decay process when the downstream 

hyporheic transit time sufficiently exceeds the vertical hyporheic mixing timescale, 𝜏𝑏𝑒𝑑, which 

was found to occur only for 𝜏𝑇/𝜏𝑏𝑒𝑑 > ~2. Turbulent hyporheic mixing reduced the thickness of 

the hyporheic zone characterized by power-law residence times. However, the small thickness of 

the zone of enhanced mixing relative to the bed depth (𝑧𝑖/𝑑𝑏 ≤ 0.06) implies that enhanced 

interfacial mixing is only a second order control on long vertical mixing timescales for deeper 

beds (Figure 3.3, 1 km BTCs), and exerts a much greater control on BTCs by increasing 

downstream hyporheic velocity and thereby reducing 𝜏𝑇 .  BTCs in reaches with lower 𝜏𝑇/𝜏𝑏𝑒𝑑 

were characterized by sharp BTC tempering as mass exited the stream reach via downstream 

hyporheic advection, whereas reaches with higher 𝜏𝑇/𝜏𝑏𝑒𝑑  were characterized by more gradual 

BTC tempering. The late-time shape of BTCs may therefore clarify interpretation of which 

timescale dominates plume behavior in the field [Aubeneau et al., 2014], provided signal-to-

noise ratios are sufficiently high to enable discrimination of the late-time tailing behavior 

[Drummond et al., 2012].  

 The shape of the enhanced interfacial transport profile is not expected to exactly match the 

shape of profiles in real systems. Instead, it represents a minimally parameterized profile that 

captures key features of turbulent stress profiles observed for flows over very permeable 

streambeds. These features include enhanced stresses at the SWI and exponential decay of 

stresses in the streambed [Breugem et al., 2006; Manes et al., 2009; Manes et al., 2011; Blois et 



104 

 

 

al., 2013; Voermans et al., 2017].   Model fits to experimental injections show that the region of 

the streambed where enhanced mixing is found (i.e., SWI to 𝑧𝑖) corresponds to the region where 

turbulent stresses and high-frequency concentration fluctuations are observed (Chapter 2). This 

result suggests that high-frequency measures of subsurface concentration can be used to estimate 

𝑧𝑖. Although field measurements of mass transport at turbulent timescales are currently limited 

by available sensing technology, recent numerical simulations [Chandesris et al., 2013] and 

laboratory experiments (Chapter 2) show the existence of low-frequency (~10-100s) 

concentration oscillations just beyond the streambed depth where turbulent stresses are observed. 

Detection of low-frequency oscillations in the streambed may help identify regions of enhanced 

mixing.  

Our findings add to a growing literature that confirms interfacial momentum transport directly 

controls mixing in highly-permeable porous media [Nagaoka and Ohgaki, 1990; Packman et al., 

2004; Lightbody and Nepf, 2006; Poggi et al., 2006; Nepf et al., 2007; O'Connor and Harvey, 

2008; Chandesris et al., 2013; Chandler et al., 2016]. Further, we demonstrate that this control 

extends to the reach scale. A mechanistic understanding of turbulent momentum transport is 

therefore essential for inferring hyporheic residence times from solute injections. Recently-

developed scaling relations for interfacial momentum transport have shown promising ability to 

predict characteristics of interfacial turbulence based on measurable system properties (e.g., 

permeability, shear stress), and may be valuable predictors of mass transport at both the local and 

reach scales [Ghisalberti, 2009; Manes et al., 2012; Voermans et al., 2017]. Future research is 

needed to validate the applicability of available scaling relationships to predict turbulent mass 
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transport in high permeability streambeds. This will require simultaneously measuring hyporheic 

momentum and mass transport at turbulent frequencies. Such efforts will provide a direct means 

to assess both the range of natural settings where hyporheic turbulence is important, as well to 

parameterize turbulent hyporheic exchange in upscaled models for solute transport in rivers 

3.5 Supporting information 
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Figure 3.7. Residence time distributions for various subdomains in the simulation. Entire 

hyporheic zone (black line). Hyporheic zone below 𝑧𝑖 (dark hue). Region between 𝑧𝑖 and the 

SWI (middle hue). Mobile zone (light hue). Residence times in the interfacial layer are 

exponentially distributed and shorter than mobile zone residence times. The slope of the 

power-law is proportional to ~𝑡−1/2 in all plots.  
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CHAPTER 4 

Benthic Biofilm Controls on Fine Particle Dynamics in Streams*  

 

 

 

 

 

 

 

 

 

 

 

 

*This material has been published: Roche, K. R., J. D. Drummond, F. Boano, A. I. Packman, 

T. J. Battin, and W. R. Hunter (2017), Benthic biofilm controls on fine particle dynamics in 

streams, Water Resour. Res., 53, 222–236, doi:10.1002/2016WR019041. 
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ABSTRACT 

Benthic (streambed) biofilms metabolize a substantial fraction of particulate organic matter 

and nutrient inputs to streams. These microbial communities comprise a significant proportion of 

overall biomass in headwater streams, and they present a primary control on the transformation 

and export of labile organic carbon. Biofilm growth has been linked to enhanced fine particle 

deposition and retention, a feedback that confers a distinct advantage for the acquisition and 

utilization of energy sources. We quantified the influence of biofilm structure on fine particle 

deposition and resuspension in experimental stream mesocosms. Biofilms were grown in 

identical 3-m recirculating flumes over periods of 18-47 days to obtain a range of biofilm 

characteristics. Fluorescent, 8-μm particles were introduced to each flume, and their 

concentrations in the water column were monitored over a 30-minute period. We measured 

particle concentrations using a flow cytometer and mesoscale (10 μm to 1 cm) biofilm structure 

using optical coherence tomography. Particle deposition-resuspension dynamics were 

determined by fitting results to a stochastic mobile-immobile model, which showed that retention 

timescales for particles within the biofilm-covered streambeds followed a power-law residence 

time distribution. Particle retention times increased with biofilm areal coverage, biofilm 

roughness, and mean biofilm height. Our findings suggest that biofilm structural parameters are 

key predictors of particle retention in streams and rivers. 
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4.1 Introduction 

The streambed is a highly reactive habitat of stream ecosystems. Here, biogeochemical 

transformations are largely driven by sediment-attached and matrix-enclosed microbial 

communities, called biofilms [Jones and Mulholland, 1999; Fellows et al., 2006; Battin et al., 

2008; Battin et al., 2016]. Biofilms control critical ecosystem processes, provide entry for 

organic carbon into the stream food web, and influence the amount and lability of carbon 

exported downstream [Battin et al., 2008; Tank et al., 2010; Battin et al., 2016]. Abiotic features 

of streams (e.g., flow, streambed topography) are traditionally used to parameterize in-stream 

transport models, while biofilms are generally assumed to control only the transformation of 

reactive constituents (e.g., organic carbon and nutrients). However, there is growing 

experimental evidence that shows benthic biofilms modify water flow [Nikora, 2010; Marion et 

al., 2014] and nutrient retention [Battin et al., 2003a; Bottacin-Busolin et al., 2009; Aubeneau et 

al., 2016] close to the streambed. This feedback may have implications for carbon fluxes in 

stream networks, since reactions largely occur at the sediment-water interface [Jones and 

Mulholland, 1999; McClain et al., 2003; Boano et al., 2014]. Biofilm-transport interactions are, 

therefore, critical but missing components of upscaled reactive transport models in streams. 

Fine particulate organic matter (FPOM, <10 μm) are important sources of energy in streams 

and rivers [D C Richardson et al., 2013]. Such particles derive from leaf litter and woody debris 

and from dissolved organic matter (DOM) that is adsorbed to soil and mineral particles. In 

streams, extracellular enzymes expressed by microbial heterotrophs in biofilms hydrolyze FPOM 
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into its dissolved constituents, which then can be taken up and metabolized [D C Richardson et 

al., 2013]. Factors such as enzyme concentration, particle size, and the degree of organo-mineral 

complexation can reduce reaction efficiency [Dimock and Morgenroth, 2006; Hunter et al., 

2016]. FPOM can be remobilized before they are completely degraded, illustrating the 

dependence of FPOM metabolism on particle delivery and retention at the streambed and its 

biofilms [Battin et al., 2003a; Allan and Castillo, 2007]. 

Particles deposit and resuspend episodically as they move through streams [Cushing et al., 

1993; Newbold et al., 2005; Harvey et al., 2012; Boano et al., 2014; Drummond et al., 2014a]. In 

a well-mixed stream, particle deposition can be described by a first-order removal rate, which is 

generally reported as a deposition velocity, vdep [McNair and Newbold, 2012]. This velocity 

typically exceeds the gravitational settling velocity predicted by Stokes’ Law for small (<160 

µm) particles [Thomas et al., 2001]. Particle resuspension is governed by a number of processes, 

resulting in a wide distribution of particle retention times. Turbulent eddies resuspend particles 

on the order of seconds by generating intermittent shear stresses at the streambed [Ninto and 

Garcia, 1996; Niño et al., 2003; Soldati and Marchioli, 2009]. Long-term retention (hours to 

months) is attributed to a combination of biological trapping and deeper sequestration within the 

stream sediments [Newbold et al., 2005; Arnon et al., 2010; Harvey et al., 2012; Drummond et 

al., 2014b]. 

Fluvial transport models have evolved to accommodate the wide range of particle residence 

times in streambeds. Drummond et al. [2014a] extended a continuous time random walk model, 
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developed for solutes [Boano et al., 2007], and showed that particle residence time distributions 

(RTDs) follow a power law in streambeds. This mobile-immobile model conceptualizes particle 

transport as a series of discrete displacements and waits, which are stochastically represented as 

displacement-length and wait-time probability distributions. Because it assumes no pre-specified 

RTD, the mobile-immobile model allows for parameterization of particle transport with 

distributions based on physical, independently verifiable processes. This allows deposition and 

resuspension to be parsed more explicitly than prior models, which have either lumped the two 

processes or parameterized exchange as an idealized transfer of mass between the stream and 

well-mixed storage zones [Cushing et al., 1993; Paul and Hall, 2002; Newbold et al., 2005].  

Separation of deposition and resuspension dynamics is a crucial step to improving particle 

transport models, since these two processes are governed by different mechanisms [Boano et al., 

2014; Aubeneau et al., 2015b]. In situ observations of deposition and resuspension events 

remains an experimental challenge. Consequently, particle deposition and resuspension 

parameters are typically estimated from fits to in-stream particle concentrations and constrained 

by physical process models or independent observations, such as particle retention in sediments 

[Drummond et al., 2014a; Drummond et al., 2014b]. 

Biofilms can substantially alter local environmental conditions on and within the streambed 

[Battin et al., 2016]. The biofilm extracellular polysaccharide matrix is a sticky substance that 

increases particle trapping, potentially retaining particles until the microbial community is 

remobilized by dispersal or scour [Lock and Williams, 1981; Sutherland, 2001; Boulêtreau et al., 

2006; Vignaga et al., 2013; Marion et al., 2014]. Biofilms can also contain long, filamentous 
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structures called streamers that extend into the turbulent boundary layer [Stoodley et al., 1999; 

Besemer et al., 2009], and their oscillations interact with the external flow field [Taherzadeh et 

al., 2012]. Mature biofilms are porous systems with highly variable topography [Stoodley et al., 

2002; Battin et al., 2003a]. These contributions to highly heterogeneous biofilm structure modify 

streambed roughness, which modulates turbulence intensity and solute transport near the 

streambed [Larned et al., 2004; Nikora, 2010; Larned et al., 2011]. In turn, the modified flow 

field is expected to enhance particle deposition, since particle settling is more likely in a region 

of low turbulence [Bouwer, 1987; Drury et al., 1993b; Battin et al., 2003a].  

Flow-biofilm interactions are expected to occur predominantly at vertical scales between 100 

µm and 10 cm [Nikora et al., 1998; Nikora et al., 2002; Larned et al., 2004; Larned et al., 2011], 

which coincides with the scales of biofilm structural heterogeneity [Morgenroth and Milferstedt, 

2009]. Nonetheless, few experiments have analyzed the influence of biofilm structure on fine 

particle dynamics across this range of scales, limiting our understanding of which mechanisms 

control this biophysical feedback. In this study we simultaneously quantified the mesoscale (10 

µm to 1 cm) physical structure of benthic biofilms and suspended tracer particle concentrations 

in stream mesocosms. We fit the measured particle concentrations to a stochastic mobile-

immobile model, allowing us to assess the influence of biofilm structure on particle deposition 

and resuspension dynamics. We hypothesized that benthic biofilms, differing in physical 

structure and overall streambed coverage, would differentially affect the deposition rate and 

resuspension probability of fine particles.  
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4.2 Materials and Methods 

4.2.1 Mesocosm Setup 

The study consisted of 14 individual experiments. For each experiment, we constructed a 

recirculating flume with a 300 cm L x 5 cm W x 12 cm H test section. The flume was gravity fed 

by a 1-L header tank and flowed into a 1-L effluent tank. We used an Eheim compact 1000 

aquarium pump (Eheim GmbH & Co KH, Deizisau, Germany), located at the bottom of the 

effluent tank, to recirculate water to the header tank. The two tanks were connected with 1.25 cm 

diameter vinyl tubing. The flume slope was adjusted to achieve a uniform water column depth 

across the entire test section (slope = 0.005). We lined the test section with 5 cm L x 5 cm W x 1 

cm H ceramic tiles, which were acid washed and precombusted at 450 °C for 8 h to remove 

organic matter. The flume setup is shown in Figure 4.1, and photographs are provided in the 

Supporting Information.  

 

Figure 4.1. Mesocosm setup. 
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Each experiment consisted of a biofilm growth period, followed by a 30-min period where we 

injected tracer particles and monitored their concentration in the water column. For the duration 

of the experiment, we recirculated water from an oligotrophic alpine lake (Lunzer See, Austria). 

The biofilm growth period ranged from 0 to 47 days across experiments, which allowed for the 

development of biofilms with a range of structural properties. During the growth period we 

replaced flume water every second day to ensure adequate carbon and nutrients were available 

for microbial growth.  We replaced water by first draining a small volume of water from the 

effluent tank. We then added an equivalent volume of replacement water to the effluent tank. 

These steps were repeated until one flume volume (approximately 3 L) was added. Flumes were 

located indoors and operated under twelve-hour light : dark cycles. A benthic biofilm formed on 

the tiles during this period. 

4.2.2 Flume hydrodynamics 

At the end of the growth period we measured stream depth and flowrate. Flowrate was 

measured by diverting the return flow to a 1-L graduated cylinder and measuring filling time. We 

calculated mean flume velocity 𝑈 =  𝑄 𝑑𝑤⁄ , where 𝑈 is mean flume velocity (cm/s), 𝑄 is 

flowrate (cm3/s), 𝑑 is water column depth (cm), and 𝑤 is flume width (cm). Stream Reynolds 

number is reported as 𝑅𝑒 = 4𝑈𝑅ℎ/𝜈, where 𝜈 is the kinematic viscosity of water (cm2/s). The 

Froude number is defined as 𝐹𝑟 =  𝑈 √𝑔𝑑⁄ , where 𝑔 is the gravitational constant (9.81 m2/s). 

Shear velocity, 𝑢∗ (cm/s), was calculated using the Colebrook-White equation for free-surface 

flow (see Supporting Information). 
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4.2.3 Fine particle release and monitoring 

We immediately released a pulse of fine fluorescent tracer particles (EcoTrace, ETS 

Worldwide Ltd., Helensburgh Scotland) at the end of the growth period. Tracer particles were 

stained with rhodamine dye. Mean particle diameter was 8.4 ± 7.0 µm and mean particle volume 

was 25.4 ± 18.6  µm3 as measured on an EyeTech particle size (Ankersmid, Eindhoven, 

Netherlands), and their specific gravity was 2.65. Estimated particle settling velocity was 0.044 

mm/s, calculated from Stokes’ Law. Particles were suspended in 50 mL of a 1 g/L sodium 

tetraborate solution (dissolved in deionized water) to prevent aggregation. This yielded a slug 

with 12.4 g/L particle concentration. We agitated this suspension for 30 s and immediately 

injected it into the flume header tank (Figure 4.1). We then monitored particle concentrations in 

the water column for 30 min following injection. During this time, we collected water column 

samples using standard 2-mL tubes inserted into the water column at the flume outlet (before 

flume water mixed with effluent tank water). We initially collected samples at 5-sec intervals 

and gradually decreased the sample rate over the course of the 30-min monitoring period (5-sec 

frequency from 0-2 min; 1 min/2-5 min; 5 min/5-30 min). Samples were immediately 

refrigerated until particle analysis.  

We quantified particle concentrations with a Cell Lab Quanta flow cytometer (Beckman 

Coulter Inc., Brea, CA, USA). Briefly, water samples were mixed for 60 s using a vortex mixer. 

500 μL of sample water was then drawn into the flow cytometer’s flow cell at a rate of rate of 60 

L min-1 for between 2 and 5 mins (automated duration based on concentration). Particle 
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concentrations were quantified by measuring fluorescence in the green and orange spectra using 

the Cell Lab Quanta SC software package. Concentrations were normalized against background 

autofluorescence of the flume water and verified against detection limits of the instrument, 

following procedures described in Drummond et al. [2014]. We smoothed each concentration 

time series using a standard moving-window averaging function in Matlab (R2015b, Mathworks 

Inc., USA), as described in the Supporting Information. 

Along with the particles, we co-injected a NaCl solution (50 mL, 100 mS/cm) as a 

conservative tracer, which we measured as electrical conductivity in the flume effluent tank 

(WTW Cond 3210, Xylem Inc., Weilheim, Germany). This solute pulse was detectible for 3-4 

flume recirculations before fully mixing with the water column. We determined flume 

recirculation time, 𝑡𝑟, defined as the mean time between successive peaks of the recirculating 

solute pulse, and the volume of recirculating water in the flume, 𝑉𝑓, via the observed dilution of 

the solute tracer under well-mixed conditions. 

4.2.4 Biofilm physical structure 

At the conclusion of the 30-min particle release and monitoring period, we stopped the flow 

and randomly removed 3 tiles located at least 15 cm (3 tiles) from the flume inlet and outlet 

sections. Tiles were carefully transferred to petri dishes. Dishes were slowly filled with 

deionized water until the tile surface was submerged below 1 to 2 mm of water. We imaged 3 

random but non-overlapping locations on each tile, resulting in 9 (1 cm x 1 cm) scan areas for 

each experiment. The biofilm-covered tiles were imaged with a spectral-domain optical 
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coherence tomography (OCT) microscope (Ganymede, ThorLabs, Newton, NJ, USA), which 

measures scattered and back-reflected light from an illuminated volume of the sample [Huang et 

al., 1991; Xi et al., 2006; Wagner et al., 2010]. The microscope records 2-D image slices in the 

x-z plane (10-μm pixels) at 10-μm intervals in the transverse (y) direction. Note that the particles 

were smaller than the pixel size and thus could not be resolved individually. Output files were 

TIFF stacks of 2-D greyscale images in the x-z plane. These files were post-processed using Fiji 

(ImageJ platform 1.47h) [Schindelin et al., 2012; Schneider et al., 2012] and Matlab (R2015b). 

We manually straightened each image to assure biofilms were consistently measured from the 

base of the tile. We cropped the image stacks to minimize variability in light intensity, resulting 

in an average usable scan area of 3.8 cm2 per experiment. Lastly, we binarized each image to 

distinguish biofilms from the water column. A full description of the post-processing procedure 

is provided in the Supporting Information.  

We calculated several biofilm structural parameters from the OCT data to evaluate their 

influence on particle deposition and resuspension. Mean height measures the average overall 

height above the tile. We define roughness as the mean magnitude of variations in biofilm 

height, |𝐻 − 𝐻̅̅̅ ̅̅ ̅̅ ̅̅ |. Areal coverage is defined as the fraction of tile surface area occupied by biofilm 

at least 10 μm thick, which is the smallest length scale we could resolve. For this calculation, we 

assume a unit spacing in the transverse (y) direction equal to the distance between scans (10 μm). 

All image analysis was performed using 2-D images, and 3-D composite images are provided for 

illustrative purposes only. 
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4.2.5 Stochastic model for fine particle deposition/resuspension in biofilms 

We adapted the mobile-immobile model for particle transport in streams [Boano et al., 2007; 

Drummond et al., 2014a] to quantify fine particle dynamics in the recirculating flumes. The 

model assumes a partitioning of particles between a mobile and an immobile domain, considered 

to represent the water column and the streambed, respectively. Particle deposition events are 

mathematically represented as a transfer of particles from the mobile to the immobile domain, 

while particle resuspension is considered a transfer from the immobile domain to the mobile 

domain. Particle concentrations are assumed to be spatially uniform in the water column.  

A full model derivation is provided in the Supporting Information. In brief, the concentration 

𝐶(𝑡) of particles in a well-mixed water column is described by the following mass balance: 

d𝐶(𝑡)

d𝑡
𝑉𝑓 =  −𝑁𝑑𝑒𝑝(𝑡) + 𝑁𝑟𝑒𝑠(𝑡) 

4.1 

where 𝑉𝑓 is the volume of water in the recirculating flume, and 𝑁𝑑𝑒𝑝(𝑡) and 𝑁𝑟𝑒𝑠(𝑡) denote 

the rate of particle deposition and resuspension, respectively (𝑡−1). 𝑁𝑑𝑒𝑝(𝑡) is a first-order 

boundary flux to the streambed, governed by a rate constant, 𝛬 (𝑡−1)  [Drummond et al., 2014a]. 

Note that this rate is a depth-normalized deposition velocity, 𝛬 = 𝑣𝑑𝑒𝑝/𝑑, where 𝑣𝑑𝑒𝑝 is the 

deposition velocity typically reported in field studies [Thomas et al., 2001; Newbold et al., 

2005]. Following mobile-immobile stochastic theory [Schumer et al., 2003], we assume 𝑁𝑟𝑒𝑠(𝑡) 

depends on the number of particles in the immobile zone at time 𝑡, as well as on the time each 

particle has remained immobile since it deposited, 𝑡 − 𝜏, where 𝜏 is the time of immobilization. 
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These residence times are described by a probability distribution, 𝜑(𝑡), which quantifies the 

probability a particle that has entered the immobile domain at time zero will return to the mobile 

domain at time 𝑡. Substitution of these expressions into equation 4.1 yields an integro-differential 

equation: 

d𝐶(𝑡)

d𝑡
=

𝛬𝑑𝐴𝑏

𝑉𝑓
(−𝐶(𝑡) + ∫ 𝐶(𝜏)𝜑(𝑡 − 𝜏)d𝜏

𝑡

0

)  

4.2 

where 𝛬 is the rate of particle immobilization (defined previously), and 𝐴𝑏 is the area of the 

streambed. An algebraic solution for this expression can be derived after it is transformed to the 

Laplace domain (𝑓(𝑢) = ∫ 𝑒−𝑢𝑡𝑓(𝑡)𝑑𝑡
∞

0
): 

𝐶̃(𝑢) =
𝐶0

𝑢 +  
𝛬𝑑𝐴𝑏

𝑉𝑓
(1 − 𝜑̃(𝑢))

 

4.3 

where 𝐶̃(𝑢) is the Laplace-transformed concentration, 𝐶0 is the initial particle concentration 

in the water column, 𝑢 is the Laplace variable, and 𝜑̃(𝑢) is the Laplace transformed resuspension 

time probability distribution. We assume 𝜑(𝑡) takes the form of a power-law distribution 

(𝜑(𝑡)~𝑡−(1+𝛽), 0 < 𝛽 < 1), where 𝛽 is the power-law slope [Berkowitz et al., 2006]. Here, 

decreasing values of 𝛽 decrease the power-law slope, which increases the probability that a 

particle will be retained for very long times.  The Laplace-transformed expression for 𝜑(𝑡) was 

inserted into equation 4.3 to give the analytical solution for 𝐶̃(𝑢). This expression was inverse 

transformed to the time domain using a modified version of the CTRW MATLAB Toolbox (see 

Supporting Information [de Hoog et al., 1982; Cortis and Berkowitz, 2005; Aubeneau et al., 
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2015b]), yielding a concentration time series for a fixed value of 𝛬 and 𝛽. Note that this time 

series represents the Green’s function solution, which represents the system response to a pulse 

of well-mixed particles entering the mobile domain at 𝑡 = 0. This solution can be convolved 

with a known source function (e.g., a constant or time-variable influx of particles) to predict a 

system response to more complex initial conditions. 

This form of the mobile-immobile model requires a spatially uniform concentration in the 

water column, meaning particles are well mixed in all directions. For this reason we only fit the 

model to concentrations measured after the injected pulse of particles was fully mixed with the 

flume water. We assume particles are fully mixed after the concentration peak is no longer 

detectable in the sample time series. The initial particle concentration, 𝐶0, was determined by 

extrapolating the smoothed time series to time 𝑡 = 0. Particle concentrations can be treated as 

uniform in the vertical direction for very low values of the Rouse number (𝑝 =
𝑣𝑔

𝜅𝑢∗
⁄ , where 𝑝 

is the dimensionless Rouse number; 𝑣𝑔 is the particle settling velocity; 𝜅 is Von Karman’s 

coefficient, 0.4; and 𝑢∗ is the shear velocity) [Anderson and Anderson, 2010].   To compare 

model outputs to experimental results, we normalize particle concentration by 𝐶0 and normalize 

time by recirculation time, 𝑡𝑟. 

We used the Maximum Likelihood Estimation method [Montgomery and Runger, 2010] to 

find values of 𝛬 and 𝛽 that best fit the concentration time series for each experiment. Details of 

the fitting procedure are presented in the Supporting Information. All mobile-immobile modeling 

and MLE fitting steps were executed in Matlab (R2015b). 
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4.2.6 Correlations between model parameters and biofilm structure 

We used linear regression to quantify correlations between biofilm structural parameters and 

model fits for Λ and 𝛽 across all experiments. Higher-order models were explored but did not 

substantially improve fits (results not shown). Model selection and validation was achieved by 

minimizing the Akaike Information Criterion (AIC) for each model [Akaike, 1974]. Statistical 

analysis was carried out in R [R Development Core Team, 2009]  .  

4.3 Results 

4.3.1 Flume hydrodynamics 

Average flow conditions are presented in Table 4.1. Flows did not vary considerably in time 

or between experiments.  Stream depth varied by less than 1 mm across the entire flume test 

section for all experiments. The Rouse number was on the order of 10-3 to 10-2
, which supports 

our assumption of spatially uniform particle concentrations in the vertical direction [Rouse, 

1939].  

Table 4.1. Average hydrodynamic conditions across all 14 experiments. 
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Slope 0.005 

𝑑 (cm) 0.8 ± 0.1 

𝑄  (cm3/s) 110 ± 13 

𝑈 (cm/s) 25 ± 4 

𝑡𝑟 (s) 25 ± 2 

𝑡0 (s) 75 ± 27 

𝑅𝑒 6300 ± 900 

𝐹𝑟 0.87 ± 0.20 

Rouse no., p (6.8 ± 1.3) x 10-3 

𝑢∗ (cm/s) 1.7 ± 0.3 

4.3.2 Biofilm growth 

OCT analysis revealed that biofilm growth started from individual microcolonies (day 18 of 

experiment) that coalesced through 2-dimensional and 3-dimensional proliferation. An extensive 

network of void spaces (pores) was visible in biofilms older than 30 days. Isolated streamers 

developed rather sparsely (1 to 3 per meter of streambed). Streamers were roughly 1 cm in length 

and extended through the depth of the water column (Figure 4.2e). 

Results from all experiments are plotted in Figure 4.2a-c, which show trends in structural 

parameters for biofilms of different ages. Mean biofilm height, biofilm roughness, and tile 

coverage increased rapidly between days 30 and 40. The streambed was nearly fully covered (80 

to 99%) for biofilms older than 40 d. Mean biofilm height increased to a maximum between 140 

and 160 µm, accounting for ≤ 2.5% of water column depth. Biofilm roughness reached a 

maximum of 86 µm by day 42. 
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Figure 4.2. (a-c) Biofilm structural parameters measured from each experiment. (d) Processed 

OCT images for biofilms of different age. Biofilm age (top-bottom) is 18 d, 28 d, and 42 d, 

respectively. Scale bars are 500 µm for all images. Initial biofilm microcolonies eventually 
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coalesced into a continuous canopy, resulting in near 100% coverage. (e, top) Processed OCT 

images illustrating the 3-dimensional structure of a streamer; the thin plane at the top of the 

image is a surface reflection from water in the sample container. (e, bottom) Surface 

topography of a 42-d biofilm. Basal dimensions for the image are 9 mm (along page) x 6.3 

mm (into page). Mean biofilm height is 115 µm, and max height is 450 µm. 

4.3.3 Particle dynamics and model fits 

The pulse of particles mixed fully with the water column after 2-5 flume recirculations (0.8-

2.3 min) in each experiment, indicated by the disappearance of the recirculating concentration 

peak (Figure 4.3). Water column concentrations then declined steadily throughout the remainder 

of the 30-min monitoring period for each experiment. Particle deposition was visible on the face 

of tiles. In experiments with no biofilm growth, we observed some trapping of particles under 

and between tiles. We found no particle accumulation below tiles in all other experiments, as the 

biofilms quickly covered the surface and clogged interstices between tiles.  

Water column particle concentrations from each experiment were fit to the mobile-immobile 

model, as described in the Materials and Methods. Example model fits are presented in Figure 

4.4 for illustration. Best-fit parameter values for all experiments are provided in Table 4.2. 
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Figure 4.3. Particle concentrations following a pulse release for the experiment with 28-day 

biofilm. Biofilm is shown in the middle image of Figure 4.2d. Dotted lines show sample 

standard deviation for the measured particle concentrations. (a) Concentrations shortly after 

the pulse release (linear scale). (b) Concentrations over the entire deposition period (log 

scale). 

 
Figure 4.4. (a) Model fits of long-term particle concentrations for a streambed with no biofilm 

and (b) for a streambed with a 47-day biofilm. 𝐶0 equals the initial particle concentration. 𝑡𝑟 is 

the flume recirculation time. Data and error bars show the mean and standard deviation of 

triplicate concentration measurements, respectively.   



 

 

Table 4.2. Measured parameters and mobile-immobile model fits. 

Exp. 

No. 

Days 

Growth 

Coverage Mean 

Height 

𝐻̅ (µm) 

Roughness 

𝐻 − 𝐻̅̅̅ ̅̅ ̅̅ ̅̅  
(µm) 

𝑑 

(cm) 

𝑄 

(cm3/s) 

𝑈  

(cm/s) 

𝑅𝑒 𝐹𝑟 𝑝 

(x 10-3) 

𝛬 𝛽 

1 0.0 0.00 0.01 0.0 0.70 116 33 7300 1.26 5.7 0.46 0.61 

2 0.0 0.00 0.01 0.0 0.85 116 27 6900 0.95 6.2 0.26 0.72 

3 18.1 0.16 3.88 6.5 0.80 109 27 6600 0.97 6.2 0.41 0.65 

4 18.2 0.16 3.83 6.5 0.85 115 27 6800 0.93 6.3 0.46 0.44 

5 18.4 0.23 7.61 11.8 0.80 112 28 6800 1.00 6.0 0.52 0.57 

6 25.1 0.17 5.18 8.6 0.80 99 25 6000 0.88 6.7 0.88 0.60 

7 25.3 0.17 6.07 10.0 0.85 101 24 6100 0.83 7.0 0.61 0.59 

8 28.2 0.49 19.63 21.6 0.85 111 26 6600 0.90 6.4 0.16 0.49 

9 33.5 0.30 24.17 35.2 0.95 75 16 4400 0.52 10.0 0.21 0.43 

10 42.0 0.94 158.98 86.4 0.95 118 25 6800 0.81 6.4 0.23 0.42 

11 46.8 0.79 108.29 85.9 0.10 88 18 5000 0.56 8.9 0.80 0.48 

12 46.8 0.90 155.11 84.8 0.95 117 25 6800 0.81 6.4 0.49 0.46 

 

1
2
6
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4.3.4 Correlation of biofilm structure and mobile-immobile model parameters 

We found a negative correlation of biofilm age with the power-law slope of the resuspension 

RTD, 𝛽, demonstrating a significant increase in particle retention times for older communities 

(R2 = 0.58, p < 0.01). Biofilm age did not influence deposition rate, 𝛬, (R2 = 0.02, p = 0.62). 

Measured flow parameters did not correlate with 𝛬 (R2 < 0.05, p > 0.50 for all parameters 

specified in Table 4.1).  

Table 4.3. Linear regression results between model parameters and biofilm structural 

parameters. A positive (+) effect indicates that increasing values of the structural parameter 

increased particle retention/deposition. 

Model 

Parameter 

Structural Parameter Effect R2 p-value d.f. AIC 

𝛽  

Coverage + 0.49 0.01 10 -24.74 

Mean Height, H̅ + 0.36 0.04 10 -22.05 

Roughness, H − H̅̅̅ ̅̅ ̅̅ ̅̅  + 0.45 0.02 10 -23.87 

Λ 

Coverage N/A 0.00 0.92 10 -- 

Mean Height, H̅ N/A 0.00 0.96 10 -- 

Roughness, H − H̅̅̅ ̅̅ ̅̅ ̅̅  N/A 0.00 0.92 10 -- 
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Linear regression results are provided in Table 4.3 for each biofilm structural parameter. All 

parameters were positively correlated with decreasing values of 𝛽, meaning they increased 

particle retention times. We chose surface coverage as the most robust predictor of 𝛽 for several 

reasons: (1) it provided the best goodness of fit and lowest AIC value, (2) coverage values 

spanned the entire range of possible values, and (3) data points were the least clustered for this 

parameter. The regression equation was (Figure 4.5): 

𝛽 = 0.61 − 0.20 ∗ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 

(R2 = 0.49, p = 0.011) 

4.4 
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Biofilm structure did not influence particle deposition rate in the flumes (R2 = 0.00, p ≥ 

0.92). Values for 𝛬 ranged between 0.16-0.88 s-1. These rates equate to deposition velocities of 

1.9 – 8.0 mm/s, which are 40x – 180x greater than the gravitational settling velocity (0.044 

mm/s). Therefore, particle deposition was unaffected by settling. Although preferential 

deposition was observed behind isolated streamers, these structures only sparsely populated the 

flumes. Thus, they likely played a minor role in overall deposition.  

 

Figure 4.5. Linear regression fit showing relationship between power-law slope, β, and 

biofilm coverage. Solid line represents the best fit line (equation provided in plot), and dashed 

lines are 95% confidence intervals. 

We present cumulative residence time distributions to illustrate the relationship between 𝛽 

and particle retention (Figure 4.6). The plotted distributions are derived directly from model fits 

to 𝛽 for each experiment (see Supporting Information), and they show the probability that a 



130 

 

 

deposited particle will resuspend after a specified time, for a given value of 𝛽. We assume that 

resuspension probabilities are nonzero over a finite interval of times, with a minimum of 𝛬𝑚𝑎𝑥

≈ 1 s, where 𝛬𝑚𝑎𝑥 is the upper limit of the calculated values for 𝛬 (0.88 s-1). The maximum 

residence time is assumed to be 7 months, which corresponds to retention times observed for 

virus-sized particles in wetland mesocosms [Flood and Ashbolt, 2000]. The chosen values of 𝛽 

correspond to measured values at distinct periods of biofilm growth: a bare surface (0% 

coverage, 𝛽 = 0.72), an 18-day biofilm (23% coverage, 𝛽 = 0.57) and a 47-day biofilm (90% 

coverage, 𝛽 = 0.46).  For low resuspension probabilities (< 0.8), an increase in biofilm coverage 

results in a marginal increase in retention time (Figure 4.6a).  This time difference grows 

substantially for resuspension probabilities approaching 1, which reflects the increased 

likelihood of very long retention times. For example, a particle will resuspend with 99.9% 

probability in 0.17 d for a bare surface vs. 17 d for a bed with 90% coverage (Figure 4.6b).  
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Figure 4.6. Cumulative resuspension time distributions for three measured values of power-

law slope, 𝛽. A decrease in β increases the time required for a particle to reach a specific 

probability of resuspension. Distributions are similar at early times but differ substantially as 

resuspension probability approaches 1. (a) Distributions from 0 to 3 min. (b) Distributions 

from 0 to 30 d. 

4.4 Discussion 

Reach-scale particle transport integrates multiple deposition and resuspension events. The 

relative frequencies of these events determine the balance of fine particle sequestration and 

export downstream. Thus, the different mechanisms that govern deposition and resuspension 

must be independently parameterized in fluvial transport models.  Using a stochastic mobile-

immobile model, we found that fine particle residence times on a biofilm-covered impermeable 

streambed followed a heavy-tailed power law distribution (Figure 4.4). A similar result was 

found by Drummond et al. [2014a] for fine particles transported in natural streams, in which the 

authors attributed long-term particle retention to a combination of surface-subsurface (hyporheic) 
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exchange, reversible filtration by sediments, and trapping by biofilms. Our results show that 

biofilm trapping alone results in a heavy-tailed power law residence time distribution (RTD).  

The power-law slope, β, correlated with mean biofilm height, roughness, and the fraction of 

the bed covered by biofilm (Table 4.3). Both physical trapping in biofilm pore spaces and 

electrostatic biofilm-particle interactions have been hypothesized to control particle interactions 

with the biofilm matrix. Early laboratory studies showed strong correlations between fine 

particle retention and biofilm thickness, suggesting that trapping within void spaces was most 

important [Drury et al., 1993a; Okabe et al., 1997]. However, particle trapping has also been 

observed in nascent (2-µm thick) biofilms that were too thin to contain pores large enough for 

particles [Drury et al., 1993b]. This finding and others have pointed to particle adhesion to 

biofilms as an alternative control on particle retention [Xu et al., 2005; Morales et al., 2007]. 

Biofilm extracellular polymeric substances are typically heterogeneous at the micrometer scale, 

allowing for varied steric and electrostatic interactions between the biofilm and particle surfaces 

that favor adhesion [Bouwer, 1987; Sutherland, 2001; Searcy et al., 2006; Flemming and 

Wingender, 2010].  

The structural parameters reported in this study cannot be used to distinguish between 

physical trapping and particle adhesion to the biofilm, since we could not fully resolve pore 

structure across the thickness of mature biofilms or distinguish particles within the biofilm 

matrix. Nonetheless, we highlight the potential for biofilm surface coverage to be used as an 

integrated predictor of fine particle retention in streams and rivers, since it may be possible to 
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estimate this parameter without the aid of sophisticated microscopic techniques (e.g., hand-held 

photography, surface inspection). Biofilm coverage may, therefore, be a suitable complement to 

other local observations that are used to parameterize solute and fine particle RTDs in upscaled, 

predictive stream models [Boano et al., 2007; Stonedahl et al., 2012; Drummond et al., 2014a; 

Aubeneau et al., 2015b]. For example, Drummond et al. [2014] performed sediment column 

filtration experiments on 6-cm bed sediment cores to determine fine particle RTDs in hyporheic 

sediments of a lowland stream. They then used these results to parameterize a mobile-immobile 

model that accurately described particle transport and retention in a 221 m stream reach. This 

approached worked well because hyporheic filtration was the dominant control on particle 

deposition in the study reach. Biofilms are expected to increase fine particle retention both in the 

hyporheic zone and on the bed surface [Thomas et al., 2001; Morales et al., 2007; Arnon et al., 

2010]. The results presented here provide a basis to include the effects of biofilm coverage and 

growth directly onto biofilm-covered portions of the streambed, as well as the effects of biofilm 

coatings of hyporheic sediments, on particle transport. Biofilm growth should then be considered 

as a secondary modification to the primary retention RTDs [Margolin et al., 2003], 

parameterized via experiments with biofilms grown on the relevant substratum or with in situ 

observations of particle retention in biofilms.  
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Figure 4.7. Conceptual diagram of mechanisms governing fine particle dynamics for a 

biofilm-covered streambed.  Particle-biofilm interactions occur from scales ranging from 

biofilm pores (1 µm) to the depth of the stream (1 m). 

We found no significant correlation between biofilm structure and particle deposition rate, 𝛬, 

which was unexpected. Model fits for 𝛬 were sensitive to concentrations at early times, which 

were highly variable. Estimates for 𝛬 were, therefore, less robust than estimates for 𝛽, which 

were determined by concentrations at late times. Early-time removal depends on primary 

delivery and deposition of particles to the benthic biofilm. The influence of biofilm canopies on 

particle deposition merits further investigation, as biofilm structure is known to influence near-

bed hydrodynamics (Figure 4.7). The flow field near the streambed is highly altered by biofilm 

patches, producing complex, three-dimensional flow patterns [Costerton et al., 1995]. Particles 

are advected around and into the biofilm before colliding with the biofilm matrix [Birjiniuk et 

al., 2014]. Positive correlations have been found between particle deposition and biofilm 
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thickness [Drury et al., 1993b], roughness [Searcy et al., 2006; DiCesare et al., 2012], and 

sinuosity [Battin et al., 2003a]. However, a definitive mechanistic understanding of structure-

deposition interactions requires substantial technological improvements to simultaneously 

resolve biofilm pore structure, the three-dimensional flow structure around biofilms, and fine 

particle deposition and resuspension under turbulent conditions [Weiss et al., 2013]. 

The correlation between biofilm coverage and 𝛽, quantified by Equation 4.4, provides a 

functional relationship between the structure of streambed biofilms and RTDs for fine particles 

immobilized at the streambed. This relationship highlights one of the numerous process 

interactions between biofilm-covered streambeds and fine particles. Additional feedbacks 

recognized in engineered and natural systems are particle size relative to biofilm pore size 

[Okabe et al., 1998; Arnon et al., 2010], water chemistry [Searcy et al., 2006; Morales et al., 

2007], biofilm modification of subsurface flowpaths [Battin and Sengschmitt, 1999; Cuthbert et 

al., 2010; Aubeneau et al., 2016], flow regime [Okabe et al., 1997; Okabe et al., 1998], and 

complex biofilm responses from interspecies interactions and environmental cues [Battin et al., 

2016; Flemming et al., 2016]. Future research efforts should address the relative roles of these 

process interactions in controlling fine particle dynamics.  

The small-scale feedbacks between biofilms and fine particles are a subset of the full range of 

feedbacks governing particle transport in streams. For example, the deposition dynamics 

modeled in the current study assume well-mixed particle concentrations in the water column, a 

condition that can vary over the meter scale in reaches with multiple geomorphological units 
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(e.g., pool-riffle sequences). Particle fluxes are also coupled to terrestrial factors such as 

hillslope, vegetation type, and land use [Gomi et al., 2002; Tank et al., 2010], which can create 

kilometer-scale correlations with stream inputs. Fluxes are driven by high flow events, whose 

timing and intensity not only influence FPOM supply and retention [Fisher and Likens, 1973; 

Newbold et al., 1997; Harvey et al., 2012; Karwan and Saiers, 2012], but also control microbial 

community lifecycles by scouring and reconfiguring the streambed [Power and Stewart, 1987; 

Biggs, 1995; Gomi et al., 2002]. However, as biofilms modify near-bed flows [Nikora et al., 

2002; Larned et al., 2011] and stabilize sediments over their growth cycle, they create time-

dependent feedbacks that can extend to these scales [Vignaga et al., 2013]. 

Multiscale feedbacks present a challenge for the application of transport models to streams. 

Uniform, steady-state models can accommodate spatial and temporal variability if a sufficient 

separation of scales exists [Nikora, 2010; Marion et al., 2014]. Such models average over small-

scale heterogeneities and are applied at scales much smaller than large geomorphic features or 

hydrologic events. Their validity thus depends on the intensity of feedbacks occurring across 

these scales. Our results contribute to a growing literature that suggests biofilm growth alters fine 

particle retention across a wide range of timescales [Flood and Ashbolt, 2000; Thomas et al., 

2001; Drummond et al., 2014b]. These scales overlap with the timescales of hydrologic 

variability, which compromises the implicit assumption of stationarity in steady state transport 

models. 
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Scale interdependencies in fluvial ecosystems remain extremely difficult to characterize. Most 

experimental and field observations are restricted to a narrow range of spatial and temporal 

scales, which constrains our understanding of the predominant interactions beyond them. Future 

research efforts can address these limitations in three ways. First, the small-scale process 

interactions that control particle transport at the sediment-water interface must be properly 

characterized. New technologies will greatly improve our ability to directly observe these 

processes [Weiss et al., 2013]. Such direct observations are needed to independently estimate 

particle deposition and resuspension rates, which currently are inferred from water column 

observations. Second, future experimental and field studies must target process interactions over 

yet-unexplored scale ranges. For instance, our μm-to-cm scale observations of a biofilm-

retention feedback must be tested at larger scales where biofilm spatial patterns are observed (1 

to 100 m), since small-scale biophysical interactions can control spatial organization at larger 

scales [Nikora et al., 1998; Coco et al., 2006; Murray et al., 2008; Larsen and Harvey, 2010; 

Meire et al., 2014]. Long-term studies will also provide clues for how particle fluxes and 

interactions vary across seasonal cycles and episodic events that, for example, could result in 

nonstationarity of the power-law RTDs identified in our study. Lastly, new process models (e.g., 

stochastic transport) must be developed to accommodate the hierarchy of scales and processes 

that influence fluvial ecosystem function [Nikora, 2010; Boano et al., 2014; Marion et al., 2014]. 

Such a framework is required to properly relate laboratory observations (e.g., mm-scale flow-

biofilm interactions) to those for the entire fluvial network (e.g., time history of high flow 

events). These models will provide a tool to explore scale interdependencies that currently 
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cannot be observed, either experimentally or in the field, and predict how longer-term shifts in 

land use and climate may alter overall fine particle fluxes in streams [Battin et al., 2009; Quinton 

et al., 2010; Tank et al., 2010; Pizzuto et al., 2014].   

4.5 Conclusions 

These experiments show that particles are retained in benthic biofilms across a wide range of 

timescales (seconds to months). Application of a stochastic mobile-immobile model indicates 

that fine particle retention probabilities in biofilm-covered streambeds follow a heavy-tailed 

power law distribution (𝜑(𝑡)~𝑡−(1+𝛽), 0 < 𝛽 < 1). Particle retention, parameterized by 𝛽, was 

enhanced by increases in mean biofilm height, biofilm roughness, and streambed coverage. 

These correlations suggest that retention is controlled by biofilm structure, and that biofilm 

structural parameters should be incorporated into upscaled models for fine particle retention in 

streams and rivers. However, no biofilm structural parameters were correlated with fine particle 

deposition rate. Definitive conclusions of deposition-structure interactions require improved 

experimental capability that can resolve discrete particle deposition and resuspension events at 

the scales of turbulence. Our results direct future experimental efforts to finer scales (1 to 100 

µm) to elucidate the relative importance of microscale physical structure, surface chemistry, and 

biofilm matrix composition to overall particle deposition and retention. They also call for a 

multiscale approach to modeling fluvial transport of fine particles, since the process interactions 

influencing particle retention may be active at different spatial and temporal scales from those 

influencing deposition. 
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4.6 Supporting Information 

4.6.1 Flume Images 

 
Figure 4.8. Downstream view of flume. Flume and tile width are 5 cm. Tubes connect effluent 

and influent reservoirs. One tube delivered effluent water to influent reservoir, and the second 

tube served as overflow. 

 
Figure 4.9. Upstream view of flumes from effluent reservoirs. Middle flume (red label) is at 

the experimental endpoint, with tiles removed for image analysis. 
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4.6.2 Image analysis workflow 

OCT images were obtained using a ThorLabs Ganymede spectral domain (ThorLabs, Newton, 

NJ, USA) microscope and manufacturer-provided image acquisition software. Output files were 

3-D image stacks in TIFF format with 10 μm square voxels and a 1 cm x 1 cm scan area. These 

files were post-processed using Fiji (ImageJ platform 1.47h). The following steps describe the 

sequential method by which images were post-processed: 

1. An image stack was imported and converted to 8-bit.  

2. The original images were distorted so the flat tile surface was concave up.  To remove 

warping, images were flatted via a combination of rotation and registration steps. For 

example, if the substratum location varied across slices (i.e. 2-D images in the x-z plane), 

all images in the stack were co-registered so that the substratum was a fixed datum. This 

step flattened the substratum along the y-axis. A subsequent rotation and co-registration 

along the x-axis were then performed. 

3. Images were cropped to remove the substratum. Areas with significant light attenuation 

were also removed to minimize intra-image variability. 

4. Image noise was reduced in three steps: 

a. We applied the built-in Despeckle feature. 

b. We applied a Gaussian filter. Filter strength ranged from 5-15 μm. 

c. We subtracted a uniform value equal to the median background intensity 

(intensity 0-25 on a scale of 0-255) 

5. The image was thresholded using Otsu’s method. The low-intensity cutoff value was 

adjusted between 9-65 (standard deviation of 8), depending on image quality. 

6. For images of biofilms older than 40 d, noise was manually removed from the 

background area. This step was necessary due to very low signal-to-noise ratios for these 

images. 

7. If necessary, the built-in Fiji processing step ‘Remove Outliers’ was applied (radius 

adjusted between 0-2) to further reduce noise from the image. 

8. Images stacks were converted to 3D volumes using the ‘3D Viewer’ plugin. 3D volumes 

were used for illustration only.  

Due to a number of limitations, image quality is inversely proportional to biofilm thickness 

and heterogeneity in OCT analysis. Limited photon penetration depth causes significant signal 
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attenuation below roughly 100 μm of biomass. High density areas in the biofilm completely 

reflect incident light, masking all internal structure below them. Also, thicker biofilms (>100 

μm) occupy a larger area than the depth of field of the microscope optic. As a result, internal 

structure was not fully resolved for larger biofilms. OCT images were therefore focused on the 

uppermost region of the biofilm to fully resolve surface topography. This approach maximized 

integrity of structural parameters used for this analysis (mean biofilm thickness, variations in 

thickness, and areal coverage), at the expense of reduced image quality below the biofilm-water 

interface. Thus, we were unable to fully resolve biofilm porosity.  

Variable signal-to-noise ratios across image stacks prevented us from fully automating the 

post-processing algorithm. Parameters were constrained to the ranges specified above. These 

variables were chosen to minimize background noise and preserve the bulk biofilm structure. As 

a result, the total scan area for each replicate varied between 1-10 cm2. 
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Figure 4.10. Flow diagram describing image analysis procedure. 

 
Figure 4.11. Image slice (longitudinal-vertical plane) of a 47-day biofilm. Large voids are 

visible throughout the biofilm matrix. Scale bar is 500 μm. 

4.6.3 Hydrodynamic calculations 

We calculated shear velocity by first estimating the friction factor, 𝑓 [unitless], from the 

Colebrook-White equation for free surface flow: 



143 

 

 

1

√𝑓
= −2 log10 (

𝑘

12𝑅ℎ
+

2.51

𝑅𝑒√𝑓
)

(S1) 

where 𝑘 is bed roughness estimated from mean biofilm height, and 𝑅ℎ [m] is the hydraulic 

radius (ratio of stream cross-sectional area to wetted perimeter). We used 𝑓 to calculate the shear 

Reynolds number 𝑢∗ [m/s] from the relation: 

𝑈

𝑢∗
= √

8

𝑓
. (S2) 

Values for 𝑢∗ ranged between 1.1 - 2.1 cm/s. 

4.6.4 Stochastic mobile-immobile model derivation 

We present a derivation of the stochastic mobile-immobile model, adapted for a recirculating 

flume. The model is based on Continuous Time Random Walk (CTRW) theory, and it assumes a 

partitioning of particles between a well-mixed water column and the streambed. The 

concentration, C(𝑡), of particles in a well-mixed water column is described by the following 

mass balance: 

d𝐶(𝑡)

d𝑡
𝑉𝑓 =  −𝑁𝑑𝑒𝑝(𝑡) + 𝑁𝑟𝑒𝑠(𝑡)

(S3) 

where 𝑉𝑓 is the volume of water in the recirculating flume, and 𝑁𝑑𝑒𝑝(𝑡) and 𝑁𝑟𝑒𝑠(𝑡) denote 

the rate of particle deposition and resuspension to the streambed, respectively [t-1]. 𝑁𝑑𝑒𝑝(𝑡) can 
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be described as a boundary flux of particles, 𝐽 [particles/(m2-t)], integrated over the entire bed 

surface, 𝐴𝑏𝑒𝑑 [m2]: 

𝑁𝑑𝑒𝑝(𝑡) = 𝐽𝐴𝑏𝑒𝑑.  (S4) 

  

We assume 𝐽 takes the form of a first-order removal rate, 𝛬 [s-1], which is proportional to the 

concentration per unit bed area: 

𝐽 =  𝛬𝐶(𝑡)𝑑 (S5) 

where 𝑑 is the depth of the water column above the streambed [m]. 

𝑁𝑑𝑒𝑝(𝑡) =  𝛬𝐶(𝑡)𝑑𝐴𝑏𝑒𝑑 (S6) 

Deposited particles will remain on the bed until the forces keeping it in place (e.g., adhesive, 

gravitational) are exceeded by shear forces at the bed surface. These shear forces result from 

coherent turbulent structures sweeping over the bed. Assuming steady state flow conditions, 

particle resuspension can be described with a probability density function, 𝜑(𝑡), defined as the 

probability a particle will resuspend at time 𝑡 after deposition. Particle resuspension over the 

interval 𝑡 + d𝑡 therefore depends on the number of particles deposited at time 𝜏: 

𝑁𝑑𝑒𝑝(𝜏) = 𝛬𝐶(𝜏)𝑑𝐴𝑏𝑒𝑑 (S7) 

as well as the probability of resuspension since the particle was immobilized, 𝜑(𝑡 − 𝜏). Total 

particle resuspension over the interval 𝑡 + d𝑡 is found by integrating over all possible deposition 

times, 𝜏 ∈ [0, 𝑡]: 

𝑁𝑟𝑒𝑠(𝑡) =  ∫ 𝑁𝑑𝑒𝑝(𝜏)
𝑡

0

𝜑(𝑡 − 𝜏)d𝜏 =  ∫ 𝛬C(𝜏)𝑑𝐴𝑏𝑒𝑑𝜑(𝑡 − 𝜏)d𝜏
𝑡

0

.
(S8) 
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Substitution of equations (S6) and (S8) into equation (S3) yields: 

d𝐶(𝑡)

d𝑡
𝑉𝑓 =  −𝛬𝑑𝐴𝑏𝑒𝑑𝐶(𝑡) + 𝛬𝑑𝐴𝑏𝑒𝑑 ∫ C(𝜏)𝜑(𝑡 − 𝜏)d𝜏

𝑡

0

(S9) 

d𝐶(𝑡)

d𝑡
=

𝛬𝑑𝐴𝑏

𝑉𝑓
(−𝐶(𝑡) + ∫ 𝐶(𝜏)𝜑(𝑡 − 𝜏)d𝜏

𝑡

0

)
(S10) 

Note that the coefficient 𝑑𝐴𝑏is equivalent to the water volume above the streambed, 𝑉𝑠.  Thus, 

𝑑𝐴𝑏/𝑉𝑓 =  𝑉𝑠/𝑉𝑓. Equation (S10) represents the desired stochastic mobile-immobile equation, 

which describes the evolution of particle concentration in the water column. For a given initial 

concentration, C0, at 𝑡 = 0, equation (S10) can be solved in Laplace space to derive an analytical 

solution for the concentration. The Laplace transform of equation (S10) is: 

𝑢𝐶̃(𝑢) −  C0 =
𝛬𝑑𝐴𝑏

𝑉𝑓
(−𝐶̃ + 𝐶̃𝜑̃(𝑢))

(S11) 

where 𝐶̃(𝑢) and 𝜑̃(𝑢) denote the Laplace transforms of C(𝑡) and 𝜑(𝑡), respectively. The 

analytical solution for the Laplace transform of 𝐶(𝑡) is then given by: 

𝐶̃(𝑢) =
C0

𝑢 +
𝛬𝑑𝐴𝑏

𝑉𝑓
(1 − 𝜑̃(𝑢))

.
(S12) 

We assume a power-law resuspension distribution 𝜑(𝑡)~𝑡−(1+𝛽) , (0 < 𝛽 < 1) since fine 

particles have been shown to follow this distribution in natural streams [Drummond et al., 2014a; 

Drummond et al., 2014b]. In Laplace space  𝜑̃(𝑢) = 1/(1+𝑢𝛽). This expression was substituted 

into (S12) to yield the final form of the Laplace-transformed analytical solution. The solution 

was inverse transformed to the time domain using a modified version of the CTRW toolbox 
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developed by Cortis and Berkowitz [2005] and adapted by Aubeneau et al. [2015b]. The toolbox 

uses DeHoog’s algorithm [de Hoog et al., 1982] to perform the inverse Laplace transform. 

4.6.5  Model fits 

Prior to model fits, we smoothed each concentration time series using the built-in Matlab 

function smooth (10% averaging window, ‘rlowess’ method). Concentration and time was 

normalized as reported in the main text. 

We used the method of maximum likelihood estimation (MLE) to find best fits for the 

smoothed data to the mobile-immobile model  [Montgomery and Runger, 2010]. Briefly, this 

statistical estimation method assumes that values of the measured concentration time series are 

normally distributed about an unknown, but true, model time series with fixed values of 𝛬 and 𝛽: 

ℒ = ∏ 𝑓(𝐶𝑖|𝐶𝑚,𝑖, 𝜎)

𝑁

𝑖=1

= ∏
1

√2𝜋𝜎2
𝑒

(𝐶𝑖−𝐶𝑚,𝑖)
2

2𝜎2

𝑁

𝑖=1

(S13) 

where ℒ is the likelihood function (to be maximized), 𝐶𝑖 is the sample concentration at time 𝑡𝑖, 

𝐶𝑚,𝑖 is the model concentration, 𝑖 is the sample index, 𝜎 is the standard deviation (assumed to be 

0.2𝐶𝑚,𝑖), and 𝑁 is the total number of samples in the time series. The fitting algorithm iteratively 

generates outputs of the mobile-immobile model (with different values of 𝛬 and 𝛽) to maximize 

the likelihood function.  

Table 4.4. Mobile-immobile model fits and additional parameters. 𝛬𝑖𝑛𝑖𝑡 and 𝛽𝑖𝑛𝑖𝑡 were the 

parameter values determined from manual fits, which were used as starting values for the 

MLE fits (𝛬𝑓𝑖𝑡 and 𝛽𝑓𝑖𝑡). 𝑉𝑓 and 𝑉𝑠/𝑉𝑓 were determined from solute mass balance, as 

described in the main text. Note that an effective flume length of 2.85 m was used for the 
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calculation of 𝑉𝑠/𝑉𝑓, since the first 0.15 m was not lined with tiles to accommodate the flow 

inlet. 

Exp. No. 𝜦𝒊𝒏𝒊𝒕: 𝜦𝒇𝒊𝒕 𝜷𝒊𝒏𝒊𝒕: 𝜷𝒇𝒊𝒕 𝑽𝒇 (L) 𝑽𝒔/𝑽𝒇 

1 .500 : .464 .450 : .610 2.5 0.40 

2 .200 : .255 .600 : .718 2.3 0.52 

3 .300 : .405 .600 : .650 3.0 0.38 

4 .600 : .461 .550 : .442 2.4 0.51 

5 .500 : .519 .600 : .572 2.5 0.46 

6 .700 : .884 .580 : .595 2.3 0.50 

7 .550 : .605 .550 : .585 2.2 0.55 

8 .100 : .163 .300 : .486 2.2 0.55 

9 .150 : .213 .200 : .427 2.5 0.54 

10 .300 : .227 .400 : .416 2.8 0.49 

11 .650 : .800 .450 : .475 2.5 0.57 

12 .400 : .489 .350 : .462 2.9 0.46 

4.6.6 Cumulative probability density function calculations 

To illustrate the influence of 𝛽 on retention times, we present cumulative probability density 

functions (CDF) in the manuscript, which are calculated from fits of 𝛽. For convenience, we 

assume resuspension times are non-zero over a finite interval, with the following PDF: 

𝜑(𝑡) = {
𝐶𝑡−(1+𝛽), 𝑡𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(S14) 

 

where 𝐶 is a normalization constant , 𝑡𝑚𝑖𝑛 is the minimum resuspension time, 𝑡𝑚𝑎𝑥 is the 

maximum resuspension time, and 0 < 𝛽 < 1. We set 𝐶 = 𝛽 (⁄ 𝑡𝑚𝑖𝑛
−𝛽 − 𝑡𝑚𝑎𝑥

−𝛽) so the 
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distribution integrates to 1. We assume 𝑡𝑚𝑖𝑛 = 1/𝛬𝑚𝑎𝑥 ≈ 1 s, where 𝛬𝑚𝑎𝑥 is the upper limit of 

the calculated values for 𝛬 (0.88 s-1), and 𝑡𝑚𝑎𝑥 = 7 months, since retention time of virus-sized 

particles in wetland mesocosms has been observed for at least this duration [Flood and Ashbolt, 

2000]. This PDF can be integrated to yield the corresponding CDF: 

p(𝑡 ≤ 𝑇) =  ∫ 𝐶𝜑(𝑡)dt
𝑇

𝑡𝑚𝑖𝑛

=
𝑡𝑚𝑖𝑛

−𝛽 − 𝑇−𝛽

𝑡𝑚𝑖𝑛
−𝛽 − 𝑡𝑚𝑎𝑥

−𝛽
 . 

(S15) 

CDFs for three experimental fits of 𝛽 are presented in Figure 4.6.  
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CHAPTER 5 

An integrated experimental and modeling approach to predict 

sediment mixing from benthic burrowing behavior * 

 

 

 

 

 

 

 

 

 

 

 

*This material has been published: Roche, K. R., A. F. Aubeneau, M. Xie, T. Aquino, D. 

Bolster, and A.I. Packman (2016), An Integrated Experimental and Modeling Approach to 
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Predict Sediment Mixing from Benthic Burrowing Behavior, Env. Sci. Tech., 50 (18), 10047-

10054, doi: 10.1021/acs.est.6b01704. 
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ABSTRACT 

Bioturbation is the dominant mode of sediment transport in many aquatic environments, and 

strongly influences both sediment biogeochemistry and contaminant fate. Available bioturbation 

models rely on highly simplified biodiffusion formulations that inadequately capture the 

behavior of many benthic organisms. We present a novel experimental and modeling approach 

that uses time-lapse imagery to directly relate burrow formation to resulting sediment mixing. 

We paired white-light imaging of burrow formation with fluorescence imaging of tracer particle 

redistribution by the oligochaete Lumbriculus variegatus. We used the observed burrow 

formation statistics and organism density to parameterize a parsimonious model for sediment 

mixing based on fundamental random walk theory. Worms burrowed over a range of times and 

depths, resulting in homogenization of sediments near the sediment-water interface, rapid 

nonlocal transport of tracer particles to deep sediments, and large areas of unperturbed 

sediments. Our fundamental, parsimonious random walk model captures the central features of 

this highly heterogeneous sediment bioturbation, including evolution of the sediment-water 

interface coupled with rapid near-surface mixing, and anomalous late-time mixing resulting from 

infrequent deep burrowing events. This approach provides a general, transferable framework for 

explicitly linking sediment transport to governing biophysical processes. 

5.1 Introduction 

Sediment-dwelling organisms modify their local environment as they burrow, scavenge for 

food, and hide from predators. Biological reworking of sediments, termed bioturbation, mixes 
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particles in the sediment bed [Thibodeaux and Bierman, 2003; Meysman et al., 2006; Kristensen 

et al., 2011]. Reworked sediments encounter different biogeochemical environments that control 

particle transformation, for example by microbial metabolism, precipitation/dissolution, and 

sorption/desorption processes. Particulate organic matter is metabolized more slowly in anoxic 

sediments, and particles retained in such environments are more likely to be preserved [Lehmann 

et al., 2002; Thomsen et al., 2004; Canavan et al., 2006]. Similarly, reduced metal sulfides are 

oxidized when transported from depth into oxic surficial environments, leading to liberation of 

bioavailable dissolved metals [Phipps et al., 1993; Sundelin and Eriksson, 2001; Ciutat and 

Boudou, 2003; Simpson et al., 2012; Remaili et al., 2016]. Bioturbation is thus an important 

transport process that should be included in biogeochemical models for sediment diagenesis and 

contaminant fate in sediments.  

Continuum models are widely used to represent bioturbation [Boudreau, 2000; Lampert and 

Reible, 2009; Bessinger et al., 2012; Lin et al., 2014]. These models treat the subsurface as a 

continuous domain with volume-averaged bulk properties, such as porosity and particle 

concentrations. The simplest continuum model for bioturbation is the 1-D biodiffusion model 

[Goldberg and Koide, 1962; Guinasso and Schink, 1975; Berner, 1980; Boudreau, 2000; 

Thibodeaux et al., 2001].  In this model, fluxes are proportional to local concentration gradients, 

following classical Fickian diffusion assumptions, yielding particle motions that are small, 

isotropic and frequent relative to the scale of observation [Boudreau, 1986b; Meysman et al., 

2010]. Scale restrictions limit the applicability of local continuum models in natural 

environments. Motion that violates standard assumptions of regular Fickian diffusion, and thus 
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cannot be predicted by continuum biodiffusion models, is commonly termed anomalous transport 

[Metzler and Klafter, 2000; Zhang et al., 2012]. Fickian assumptions are violated when 

organisms quickly transport sediments over long distances. In this case, particle fluxes are not 

controlled solely by local concentration gradients, and are thus nonlocal. Commonly used 

bioturbation models are also asymptotic, meaning they are valid only after a large number of 

mixing events have been observed. However, timescales for sediment mixing by bioturbation can 

be very large because burrowing is highly heterogeneous and new burrow formation is 

infrequent, yielding substantial deviations from asymptotic model predictions [Meysman et al., 

2010]. 

Several approaches have been proposed for anomalous bioturbation. Robbins[Robbins, 1986] 

and Boudreau [Boudreau, 1986a] independently developed models to describe upward-

conveying deposit feeders, which are worms that continuously ingest sediments at depth and 

egest them above the sediment-water interface (SWI). These models include a nonlocal transport 

term associated with feeding over a range of depths. François et al. [François et al., 1997] 

extended this approach to 2-D using a finite element numerical model. Stochastic continuous 

time random walk (CTRW) models have also been proposed for bioturbation [Maire et al., 2007; 

Meysman et al., 2008a]. As with Fickian biodiffusion, CTRW models describe the ensemble 

redistribution of particles resulting from an underlying random motion, but no predefined range 

of scales are assumed in the CTRW formulation. Instead, the model is parameterized with 

probability density functions (PDFs) whose shapes explicitly define the scales that govern 

particle movements.   



154 

 

 

A scarcity of direct observations limits identification and parameterization of bioturbation 

models [Meysman et al., 2008b; Meysman et al., 2008a]. Current models assume, but do not 

verify, that biodiffusion and nonlocal transport are the relevant processes governing sediment 

mixing. Incorrect assumptions of governing processes greatly limit model fidelity and 

transferability, since model parameters are not clearly linked to fundamental, measurable system 

attributes. The goal of the present study was to develop a parsimonious model to directly relate 

statistics of burrow formation to resulting sediment mixing. We used Lumbriculus variegatus as 

a model organism because it is a common bioturbator of freshwater sediments and a standard test 

organism for contaminant transport and toxicity studies [Spencer, 1980; Timm, 1980; Lauritsen 

et al., 1985]. L. variegatus is a head-down deposit feeder that transports sediments nonlocally by 

ingesting particles at depth and egesting them at the SWI. Using time-lapse imagery, we 

observed the development of burrow structures and the resulting redistribution of tracer particles 

within experimental chambers. We then used the observed burrow statistics to parameterize a 

numerical random walk model for sediment bioturbation, and tested the model predictions 

against independent observations of sediment transport. 

5.2 Methods 

5.2.1 Sediment Collection and Characterization 

We collected sediments from Lake DePue, a shallow backwater lake of the Illinois River (IL, 

USA). Sediments, collected to a depth of 15 cm, were transported to the laboratory and 

refrigerated at 4 °C until used. Sediments were characterized by Xie et al. [M W Xie et al., 2015]. 
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81% of the sediments by volume had a diameter ≤45 µm, and ~70% had a diameter ≤10 µm. 

Bulk sediment properties (porosity, permeability, carbon content, and metals concentrations) are 

reported in the Supporting Information. 

5.2.2 Experimental Setup 

 Organism burrowing and sediment mixing were observed in an acrylic aquarium (10 cm long 

x 10 cm wide x 22 cm high). We added 8 cm of homogenized sediment to the aquarium and then 

added 1.5 L of artificially-reconstituted fresh water (see Supporting Information) [Smith et al., 

1997; M W Xie et al., 2015], creating a 10-cm water column that was constantly recirculated 

between the aquarium and the reservoir. A mechanical stirrer (IKA Lab Egg, Cole Parmer, IL, 

USA) was used to keep the overlying water in the aquarium well mixed, and the reservoir was 

constantly aerated so that the water column remained oxic.  

We allowed sediments to stabilize for 24 h, which was sufficient for all suspended particles to 

deposit back to the bed. We then added 5 mg of fluorescent tracer particles (ZQ-14, DayGlo 

Color Corp, OH) to form a uniform 0.8-mm-thick layer at the SWI. Tracer particles had 

excitation and emission wavelengths of 405 nm and 620 nm, respectively. The tracer particle size 

(20-60 µm in diameter) was chosen so that particle mobility was similar to Lake DePue 

sediments, based on the critical shear for resuspension.     

We added 0.250 g of Lumbriculus variegatus (Aquatic Research Organisms, Hampton, NH, 

USA) evenly over the SWI immediately following sediment stabilization. This corresponds to an 

organism density of 6,300/m2 [Landrum et al., 2002], which falls within the typical range of 
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oligochaete densities in freshwater sediments, 1,000-40,000/m2 [Brinkhurst, 1970; Cook and 

Johnson, 1974; Sauter and Güde, 1996]. L. variegatus egested and excreted the organic-rich test 

sediments, and no exogenous food was added during the experiment.  

This experimental setup enabled us to directly assess the linkage between L. variegatus 

movement and sediment transport, since all observed transport events were directly associated 

with organism motions. We used time-lapse photography to capture L. variegatus burrowing 

activity and resulting sediment transport. Methods to measure tracer particle motion follow those 

previously used to assess biological reworking of freshwater and marine sediments [Maire et al., 

2007; Bernard et al., 2012]. We placed a digital camera (Nikon D7000, 40-mm macro lens) 35 

cm from one face of the experimental chamber (Figure 5.1), providing a 13-µm pixel resolution. 

Burrow development and resulting sediment mixing were then imaged with a series of three 

photographs taken at 3-min intervals. Tracer particles were first imaged using ultraviolet LEDs 

(excitation wavelength 407 nm, Super Bright LEDs Inc., St. Louis, USA), and the fluorescent 

emission signal was isolated by a 610-nm bandpass filter (10 nm bandwidth, Edmund Optics 

Inc., NJ, USA). White LEDs (Super Bright LEDs) were then triggered to capture the SWI 

location SWI and worm burrows. Lastly, a dark image was taken to measure background light. 

The experiment was replicated in duplicate using sediments from the same sample and identical 

image-acquisition hardware. 
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5.2.3 Image Processing 

Image processing, numerical simulations, and model fits were performed with Matlab R2015b 

(Mathworks Inc., USA). Images were converted from .RAW to .JPEG using a linear tone curve, 

after which background light intensity was subtracted (dark images). We quantified SWI 

movement by first identifying images where the SWI changed rapidly (e.g., because of sediment 

mound collapse). We manually traced the SWI in these images and then automatically 

interpolated the SWI for all others.  

 
Figure 5.1. Experimental setup. 

To calculate tracer particle distributions, we averaged light intensity over the width of each 

fluorescent image to generate a 1-D fluorescence intensity profile, 𝐹(𝑥, 𝑡), where 𝑥 equals 

distance below the SWI and 𝑡 is time since worms were added. We then normalized these 

profiles by the overall light intensity measured below the SWI: 

𝑃(𝑥, 𝑡) =
𝐹(𝑥, 𝑡)

∑ 𝐹(𝑥, 𝑡)𝑥
 . 5.1 
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Burrows were identified using white-light images. We smoothed these images using a 

Gaussian filter and binarized them using a global thresholding algorithm (detailed in Supporting 

Information). Because LED intensity varied slightly from image to image, we averaged images 

over a 90-min window to exclude optical noise and minimize misidentification of spurious 

burrowing events. We then coarsened the resulting grayscale images to 230-µm pixels, 

corresponding to the typical burrow width. The resulting image was 205 x 137 pixels. Burrow 

development was determined from pixels that changed from light to dark between successive 

images.  Burrows were identified at a threshold of <15% light intensity to minimize false 

positives. For each pixel that changed from light to dark, the pixel depth and the time since the 

last disturbance event (wait time) were recorded. We used these results to generate a joint PDF: 

𝛹(𝑥, 𝜏) =
𝑛(𝑥, 𝜏)

𝑁
 5.2 

where 𝛹(𝑥, 𝜏) is the probability density of a burrow event occurring at depth 𝑥 after wait time 𝜏, 

𝑛(𝑥, 𝜏) is the number of events that occurred for a pixel centered at depth 𝑥 with wait time 𝜏, and 

𝑁 is the total number of events. Marginal burrow-depth and wait-time PDFs were computed 

from the joint PDF by integrating over the complementary parameter: 

𝜆 (𝑥) = ∫ 𝛹(𝑥, 𝜏)
𝜏

d𝜏 5.3 

𝜑(𝜏) = ∫ 𝛹(𝑥, 𝜏)
𝑥

d𝑥. 5.4 
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5.2.4 Random Walk Model  

We constructed a numerical random walk model for sediment motion conditioned on 𝛹(𝑥, 𝜏). 

The model domain consisted of a 2-D grid, identical to the coarsened grid used to monitor 

burrowing events. Model time steps were set equal to the averaging window for experimental 

images (90 min). The initial condition was a thin layer of tracer added uniformly to the top 0.8 

mm of the grid, which matched the experimental conditions. 

We considered two different random walk models: coupled and uncoupled. In the coupled 

model, sediment particles sample a wait time, Τ~𝜑, and then sample a burrow depth from the 

joint density, 𝑋~𝛹(⋅, Τ), which is conditioned on Τ. In the uncoupled model, sediment particles 

sample independently from 𝜑 and 𝜆. Burrowing events are considered vertical and instantaneous, 

so within a single time step a worm is assumed to have burrowed and returned to the surface. 

The horizontal location of each burrow is randomly assigned from a uniform distribution. Tracer 

particles are redistributed according to a set of rules that transports a fraction of sediments to the 

SWI at a rate proportional to the mean SWI velocity (i.e. rate of SWI movement due to sediment 

reworking), and a characteristic burrow velocity derived from the marginal PDFs (see 

Supporting Information).  

We ran 200 realizations of the model to generate ensemble-averaged concentration profiles 

𝐶(𝑥, 𝑡). Worm densities matched experimental conditions, 6,300/m2. We then calculated the 

mean and variance for the tracer particle concentration profile at each time:  



160 

 

 

𝐸(𝑋, 𝑡) =  ∫ 𝑥𝐶(𝑥, 𝑡)d𝑥
𝑥𝑚𝑎𝑥

0

 5.5 

𝐸(𝑋2, 𝑡) =  ∫ (𝑥 − 𝐸(𝑋, 𝑡))
2

𝐶(𝑥, 𝑡)d𝑥.
𝑥𝑚𝑎𝑥

0

 5.6 

5.2.5 Biodiffusion Model  

For comparison, we fit a simple advection-diffusion (ADE) model to experimental results: 

𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
+ 𝑈𝑏

𝜕𝐶(𝑥, 𝑡)

𝜕𝑥
= 𝐷𝑏

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 5.7 

where 𝑈𝑏 is the bioadvective drift of the tracer peak and 𝐷𝑏 is the effective biodiffusion 

coefficient (both assumed constant). We treated the SWI as a no-flux boundary, enabling a 

standard Green’s function solution to the problem [Polyanin and Nazaikinskii, 2016]. We fit 𝑈𝑏 

and 𝐷𝑏 with a Maximum Likelihood Estimation method [Montgomery and Runger, 2010].  
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5.3 RESULTS 

5.3.1 Burrow statistics 

 
Figure 5.2. (a) Event plot showing locations where at least one burrowing event occurred 

(black pixels). Large portions of the sediment remained unworked, especially below 10 mm 

(white pixels). (b) PDF of organism movements. This density was decomposed into marginal 

burrow-depth and wait-time PDFs. (c) Marginal burrow-depth density with an exponential fit, 

𝜆(𝑥) ~ 𝛾𝑒−𝛾𝑥, where 𝛾 = 0.48/mm. (d) Cumulative wait-time distribution, fit to a truncated 

power-law distribution, 𝑝(𝑇 > 𝜏) ~ 
𝜏1

𝛽( 𝜏−𝛽−𝜏2
−𝛽)

1−(𝜏1 𝜏2)⁄ 𝛽  , for times 𝜏1 ≪ 𝜏 ≪ 𝜏2, where 𝛽 is the 

power law slope [Aban et al., 2006].  Line shows a best-fit truncated power law with 𝜏1 = 1.5 

h, 𝜏2 = 200 h, and 𝛽 = 1.35.  
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Total sediment reworking (Figure 5.2a) and burrowing distributions (Figure 5.2b,c) varied 

with depth. By day 9, worms had reworked 86% of sediments above 5.0 mm and 10.3% of 

sediments between 5.0 mm and the deepest burrow (16.4 mm). Percentages increased to 90% 

and 13.5% by the end of the experiment. Just 3% of sediments from 10.0-16.4 mm were 

reworked at the experimental endpoint.  The joint PDF, 𝛹, shows that 56% of burrowing events 

were less than 5 mm with wait times less than 10 h (Figure 5.2b).  Burrows below 10.0 mm 

accounted for 0.4% of all events. An average burrow depth of 2.16 mm and wait time of 0.91 d 

were calculated from the marginal densities.  

 

 
Figure 5.3: Time series of mean tracer depth and SWI displacement. t = 0 is the time at which 

worms were introduced.  

Because sediments did not completely consolidate until 2 d after worms were introduced, we 

tracked the evolution of the average SWI location relative to its location when sediments finished 

consolidating (day 2). After consolidation the SWI height grew linearly until stabilizing at day 9 

(Figure 5.3, red line). Time-lapse photography showed that this stabilization was primarily due to 
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excavated sediment mounds collapsing at a rate equal to their growth (see movie S1).  However, 

the rate of sediment reworking also decreased from 4,200 pixels/day to 3,200 pixels/day after 

day 9 (24% decrease).  SWI velocity was found to be 0.18 mm/d for the initial period of linear 

growth (days 2-9).  

5.3.2 Fluorescent Tracer Results 

 
Figure 5.4: Fluorescence profiles from the experiment (—) and the joint random walk model 

(– –) at different times; blue, cyan, black, and red lines are 0, 4, 7, and 15 d, respectively. 

Tracer spread rapidly from the SWI and then slowed at later times, as evidenced by the 

similarity between Day 7 and Day 15 profiles. Inset shows tracer profiles in deep sediments. 

The model captured rapid tracer propagation into deep sediment layers (below 10 mm), which 

could not be captured by the ADE model (results shown in Supporting Information).  
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Tracer particles were rapidly mixed near the SWI (upper 5 mm) and also rapidly driven into 

deeper into the bed. Depth-averaged tracer concentration profiles are shown in Figure 5.4 for 

multiple times. Profiles are characterized by a slow advection of the tracer peak, accompanied by 

a gradual decrease in the peak concentration and spreading of the tracer profile.  Both advection 

and spreading of the peak slowed at day 9, and little change occurred in the profile from days 9-

15. Nonlocal tracer transport was observed as early as 1.75 d, when a peak appeared at 8 mm 

depth. The first peak below 10 mm appeared on Day 6 (14 mm). 
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Figure 5.5: Changes in tracer mean (a) and variance (b) from initial values calculated from 

experimental observations (blue dots) and predicted by the models (black line for coupled, red 

line for uncoupled, and cyan line for ADE).  

The gradual changes in advection and spreading were also reflected in the first- and second-order 

statistics of the profiles (Figure 5.5, blue dots). Both experimental statistics showed a sharp 

transition to slower growth rates at day 9, and this timing corresponded exactly to the transition 

in the SWI displacement (Figure 5.3).  Similar trends in tracer mean and variance were observed 

in a replicate experiment (see Supporting Information).   
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5.3.3 Model Results 

 The random walk model reproduced several central features of the experimental tracer 

profiles, including the slow advection of the tracer peak, spreading of the peak, nonlocal 

transport beyond 10 mm, and rapid mixing of near-surface sediments (Figure 5.4). The coupled 

and uncoupled models performed nearly identically, which indicates that burrowing depth and 

frequency were largely independent. Random walk simulations captured the overall trend in both 

the mean and variance, but under-predicted the observed mean tracer propagation (Figure 5.5). 

However, the asymptotic rate of increase of the mean was identical between models and 

experiment (0.04 mm/d at day 15), indicating that the random walk model captures the 

asymptotic behavior over long times. Predicted and observed variance matched near the 

experimental endpoint, but model’s rate of increase was 3 times faster than the experimental rate 

(0.09 mm2/d vs 0.03 mm2/d, averaged over 1 d). 

Because the sediment redistribution time series exhibited a clear non-diffusive trend, we fit 

the ADE model over the initial time interval where experimental variance was linear (days 0-9). 

Best-fit values were 𝑈𝑏 = 0.052 mm/d and 𝐷𝑏 = 0.73 mm2/d. The ADE could not adequately 

capture deep burrowing events at early times because this model only represents local diffusive 

fluxes with an inherent length support scale of √2𝐷𝑏𝑡. As a result, the ADE only predicted 

significant motion below 10 mm after 3.9 d (based on tracer concentration density > 1 x 10-4), 

whereas the random walk model reached this threshold over just 0.4 d because of its ability to 

reproduce rapid, nonlocal transport events based on the observed spatial and temporal scales of 
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worm burrow events. The ADE model greatly overpredicted the mean transport at late times 

because this model only accounts for mean transport with a time-invariant advection parameter. 

Mixing events in the random walk model were directly related to burrowing events and, thus, 

were appropriately restricted to the bioactive region of sediments. This enabled the random walk 

model to more accurately capture the observed transition to slower mean transport after day 9. 

Similarly, ADE variance increased linearly, which matched the experimental result at early times 

(a direct consequence of the model fit) but failed to capture the transition to slower spreading 

after day 9. This transition was captured by the random walk model owing to its direct encoding 

of the linkage between burrowing events and sediment mixing.   

5.4 DISCUSSION 

5.4.1 Worm burrowing and sediment mixing 

L. variegatus motion was highly heterogeneous. Although this organism is commonly 

described as an upward conveyor [Landrum et al., 2002; Lick, 2006], we observed several 

distinct behaviors, including sediment excavation, particle ingestion/egestion, rapid reworking of 

interfacial sediments, and deep burrowing.  Burrows were biased to the upper 10 mm of the bed 

(99.6% of events), which left extensive areas of the subsurface unaltered (Figure 5.2a). Marginal 

burrow-depth probabilities show that the majority of depths follow an exponential PDF. 

However, the infrequent deep burrowing events (0.4%) that rapidly transported sediments 

beyond 10 mm were not adequately described by this PDF, and were instead super-exponential. 

The marginal wait-time distribution contains a scale-free region from 1.5-200 h, illustrating a 
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wide range of times between revisits to a specific location. The lower limit of this distribution is 

expected to extend to the minute scale, since we observed frequent organism movements in 

images taken 3 min apart. Similarly, truncation at 200 h simply reflects the experiment duration, 

since the majority (64%) of the sediments between the SWI and the deepest burrow remained 

unperturbed at the end of the experiment.  

Heterogeneous burrowing by L. variegatus resulted in anomalous sediment mixing. Deep 

burrow events immediately delivered tracer particles well below the SWI, illustrating that these 

very infrequent events significantly influenced the tracer distribution by transporting sediments 

nonlocally. Low tracer concentrations below 10 mm were visible in the 1-D fluorescence profiles 

by day 4 (Figure 5.4), even though worms had only reworked a small portion of these sediments: 

only 3% of sediments between 10-16 mm depth had been reworked at the end of the experiment. 

Mean and variance of the tracer concentration profiles increased steadily for the first 9 days of 

the experiment (Figure 5.5), and then continued to increase at a slower rate thereafter. A similar 

transition was observed in the SWI dynamics (Figure 5.3, red line). Time-lapse images show that 

worms created steadily-growing mounds of sediment during the first 9 days, displacing the SWI 

upward. Mounds collapsed after reaching a critical height and/or after disruption by worms. 

Mound growth and collapse equilibrated at day 9, leading to stochastic variations but no net 

increase in the SWI height after this time. The synchronous changes in tracer statistics and mean 

SWI height suggest that sediment mixing is directly linked to mound formation on the SWI, 

meaning propagation of particles is not only due to worm movements below the surface, but also 

deposition of egested and excavated particles at the SWI.  
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Sediment mixing by L. variegatus was also time dependent. Tracer particles initially 

propagated downward at a rate of 0.32 mm/d (Figure 5.5a), and propagation slowed to 0.04 

mm/d after day 9. By this time worms had already reworked 86% of sediments above 5 mm. 

Subsequent sediment reworking near the SWI did not substantially alter tracer distributions, 

since tracer particles were well mixed in this region. Ongoing burrowing deeper in the sediments 

controlled downward tracer propagation at late times. The fraction of sediments reworked 

between 5-16 mm increased by 30% after day 9. 

These results show that a minimum of several weeks are needed before a pulse of particles is 

well mixed in the zone of L. variegatus activity, which is an important consideration for 

sediment biogeochemistry [Koelmans and Jonker, 2011; Kupryianchyk et al., 2013; Lin et al., 

2014; Remaili et al., 2016]. In particular, our findings suggest that heterogeneous sediment 

reworking by bioturbating organisms strongly influences the timescale of response to natural and 

engineered perturbations. The infrequency of nonlocal bioturbation events leaves large areas of 

deep sediments unmixed for long periods of time, limiting interaction between new and pre-

existing particles at these depths. This is expected to limit the timescale of response to sediment 

amendments for site remediation that require close contact between introduced particles and 

contaminated sediments [Luthy et al., 1997; Kosian et al., 1999; Thibodeaux and Bierman, 2003; 

Dąbrowski et al., 2005; Millward et al., 2005]. Nonlocal transport also can mobilize 

contaminated sediments from depth while effectively bypassing regions of sediment capping or 

amendment. The approach presented here can be used to predict conditions under which 
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introduced particles can be simply deposited on the SWI vs. conditions that require active mixing 

to ensure adequate contact with underlying contaminated sediments.  

5.4.2 Sediment Transport Model 

Our random walk model uniquely relates biophysical information to sediment mixing, 

utilizing statistics of organism motion acquired through a novel direct-visualization approach. 

The model’s use of burrow statistics as a proxy for organism motion directly links sediment 

transport to the most relevant governing process (burrowing), as opposed to commonly-used 

bioturbation models that represent transport with assumed system-scale descriptive parameters, 

e.g., biodiffusion coefficient. The model specifically relates observations of burrow formation to 

sediment motion over all relevant spatial and temporal scales, which distinguishes it from local 

continuum models that are inherently limited to frequent small-scale motions. The classical 

biodiffusion model adequately captures the effects of frequent, local mixing events near the SWI, 

but does not represent intermittent tracer displacements to deep sediments or the associated 

transition from fast mixing of surficial sediments to slower mixing of deeper sediments. Models 

with a depth-dependent diffusion coefficient can improve fits to tracer data [Christensen, 1982; 

Boudreau, 2000], but they inherently cannot represent nonlocal transport and are non-

transferrable because they are not explicitly related to the underlying motion processes. 

Conveyor-feeding models explicitly incorporate nonlocal particle displacements [Boudreau, 

1986b; Robbins, 1986], but also do not capture the full range of sediment motion because they 

impose restrictions on the scales over which these displacements occur.  
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The random walk model presented here directly represents the effects of macroscopic 

organism motions. Application of the model to specific behavioral classes of organisms requires 

the development of rules that relate organism motion to sediment redistribution. For surface 

deposit feeders and other species regarded as true biodiffusors [Robbins et al., 1979; Maire et al., 

2007; Piot et al., 2008], organism motions homogenize sediments locally, yielding the classical 

biodiffusion model as an outcome. However, the general approach proposed here can represent 

sediment mixing caused by a much wider range of organism behaviors in a unified, fundamental 

theoretical framework. The specific transport rule developed for the oligochaete Lumbriculus 

variegatus is based on known behavior of the organism (head-down deposit feeder), as well as 

direct observations of burrowing events, mound formation, and tracer redistribution within the 

sediments. Burrowing statistics were obtained via direct visualization, and the fraction of 

sediments delivered to the SWI was obtained by measuring the accumulation of sediments on the 

SWI caused by burrow excavation and sediment egestion. The model provides a parsimonious 

description of key sediment mixing outcomes that are not captured by conventional biodiffusion 

models, including time-dependent burial and spreading of the tracer peak, long-term trends in the 

mean and variance of the tracer concentration profiles, and nonlocal mixing in deep sediments 

(Figure 5.4). This sediment redistribution rule is expected to apply to the general class of deposit 

feeding organisms historically considered surface feeders or conveyor-belt feeders [Rhoads, 

1974; Powell, 1977; Robbins, 1986; Kristensen et al., 2012], comprising many oligochaete and 

polychaete species [McCall and Tevesz, 1982; Lopez and Levinton, 1987; Hutchings, 1998; 

Gérino et al., 2003], as well as gallery diffusers (e.g., Nereis diversicolor) and predators (e.g., 
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Nephtys caeca) that mix sediments diffusively near the SWI and nonlocally at depth [François et 

al., 2002; Gérino et al., 2003; Piot et al., 2008; Pischedda et al., 2008]. The transport rule can be 

reformulated to represent other types of organism behavior. The model assumes that all 

sediments are equally likely to be remobilized, which is not expected to be the case for all 

organisms or sediments. For example, the oligochaete Tubifex tubifex is generally considered an 

upward conveyor (nonlocal transport) of fine (< 63 m) sediments, but does not transport larger 

particles [Mermillod-Blondin et al., 2001].  

The model also assumes that all burrow events are independent and stationary (i.e., time 

invariant), implying that organism numbers and behavior do not change over time. These 

limitations are expected to be most severe for prediction of deeper and longer-term sediment 

mixing. For example, increased probability of organism revisits to existing burrows (as opposed 

to the formation of new burrows) and decreases in organism numbers over time will both lead to 

decreased mixing of deep sediments at late times. Further model generalization is therefore 

required to represent cases where burrowing activity varies with time. Future research efforts 

should explore extensions to represent nonstationarity and correlations related to time-varying 

worm populations and other population- and community-level changes in the benthic ecosystem, 

including species-pair interactions [Kaster; Preisser et al., 2005], burrow network/gallery 

formation [Ziebis et al., 1996; Nogaro et al., 2006], and behavioral changes due to 

environmental cues (e.g., toxicity, temperature) [Landrum et al., 2004; Maire et al., 2007; Sardo 

and Soares, 2010]. 
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5.5 Conclusions 

The combined experimental and modeling approach introduced here simplifies model 

parameterization and improves transferability by relating input parameters to the most critical 

measurable system attributes. Future research is needed to elucidate the specific roles of 

sediment reworking and other biologically-mediated transport mechanisms (e.g., solute exchange 

via bioirrigation [Kristensen et al., 2012]) in sediment biogeochemistry [Mermillod-Blondin et 

al., 2004; Pischedda et al., 2008; Volkenborn et al., 2010]. These efforts will inform the proper 

coupling between transport and biogeochemical models—a necessary step for predicting 

responses to large-scale environmental pressures and designing successful site remediation 

strategies [Lohrer et al., 2004; Burton and Johnston, 2010].  

5.6 Supporting Information.  

Time-lapse videos are available free of charge via the Internet at http://pubs.acs.org.  

5.6.1 Sediment and Water Properties 

Sediments were homogenized and analyzed several days prior to the experiment. Analysis 

methods and complete size distribution information is provided in M W Xie et al. [2015]. Bulk 

sediment properties are: 

Table 5.1. Bulk characteristics of the Lake DePue sediments used in the experiments. 

Porosity 49.3% Permeability 2.0 + 1.2x10-14 m2 

Organic C 3.09% [Zn2+] 14,000 mg/kg dry weight 
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Inorganic C 2.65% [Cu2+] 410 mg/kg dry weight 

 

Artificially-reconstituted freshwater consisted of the following chemical constituents: 5 g 

CaSO4, 5 g CaCl2, 3 g MgSO4, 9.6 g NaHCO3, 0.4 g KCl in 100 L of deionized water. 

Burrow isolation algorithm 

The following section of MATLAB script uses a Gaussian filter to smooth color images and 

convert to binary. 

% Load image 

brwimg = imread(fullfile(photopath,brwname)); 

 

% Process image to extract burrows -  

% brwimg is a 3-channel (RGB) jpeg image 

             

% Use built-in MATLAB function imfilter 

brwimg = imfilter(brwimg, fspecial('gaussian',5,2.5)); 

             

% Use built-in MATLAB function im2bw, with manually-chosen threshold 0.125 

bstruct.burrows = im2bw(brwimg,.125); 
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Figure 5.6. Example threshold image. Blue line denotes the sediment-water interface. 

 

Sediment Transport Rule 

For each burrowing event, tracer particles are redistributed according to the following rules: 

(1) The burrow depth 𝑋 is partitioned into upper and lower sections; the upper section extends 

from the SWI to depth 𝑓𝑝𝑋, where 𝑓𝑝 is a fraction. (2) Pixels in the upper section are assigned a 

new tracer concentration equal to the average concentration in the lower section. (3) The 

remaining tracer particles are uniformly distributed over the remainder of the burrow, conserving 

mass. 

We define the pile fraction fp as the ratio of the mean SWI velocity (i.e., rate of SWI 

movement due to sediment reworking) to the characteristic burrow velocity derived from the 

marginal PDFs: 

10 mm 
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𝑓𝑝 =

∆𝑥𝑆𝑊𝐼
∆𝑡𝑔𝑟𝑜𝑤𝑡ℎ

⁄

𝑣𝑐
  

5.8 

where  ∆𝑥𝑆𝑊𝐼 is the rate of change in mean position of the SWI over time  ∆𝑡𝑔𝑟𝑜𝑤𝑡ℎ . The 

characteristic burrow velocity 𝑣𝑐 is calculated as the ratio of mean burrow depth to mean wait 

time, calculated from 𝜆 and 𝜑, respectively.  

SWI velocity was found to be 0.18 mm/d for the initial period of linear growth (days 2-9). An 

average burrow depth of 2.16 mm and wait time of 0.91 d were calculated from the marginal 

densities, yielding a characteristic burrowing velocity of 2.25 mm/d. The pile fraction fp, 

calculated from equation S1, equaled 0.08. 

 
Figure 5.7. Example illustrating the tracer mixing algorithm used in the numerical model, for 

a burrow depht of 8 pixels and a burrow fraction of 0.25. Numbers within each pixel represent 

the fluorescence intensity (0-255). (i) A burrow depth 𝑋 is sampled from 𝜆; (ii) the burrow is 

partitioned into two sections, where the separation depth is designated by the pile fraction 𝑓𝑝 ; 

(iii) the average pixel value in the lower section is assigned to pixels in the upper section; (iv) 

and the remaining pixels are populated to conserve mass. 
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5.6.2 Replicate fluorescence experiment.   

We conducted replicate experiment in parallel with the one reported in the main text. Bulk 

fluorescence statistics for this experiment exhibit very similar trends (Figure 5.8). Mean and 

variance increased steadily for the first 10 d and then transitioned to much slower rates of 

increase. Burrowing distributions could not be measured in the second experiment because 

variability of the LED lighting produced an abundance of spurious burrowing events. 

 
 

Figure 5.8. Time series for mean (a) and variance (b) for the experiment reported in the main 

text (blue dots) and a replicate fluorescent experiment (red dots). Large scatter in the time 

series in (b) is due to variability of the LED light source. 
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Figure 5.9. Comparison of particle densities across models. Fluorescence profiles from the 

experiment  (—) and each model (– –) at different times; blue, cyan, black, and red lines are 

0, 4, 7, and 15 d, respectively. (a) coupled random walk model, reproduced from the main text 

for ease of comparison. (b) random walk model with independent burrow-depth and wait-time 

distributions. (c) advection-diffusion model. This model provides good fits at early times but 

substantially overpredicts transport to deep sediments at late times. 
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CHAPTER 6 

Conclusions 
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The fate of a wide range of reactive constituents is controlled by transport at and below the 

sediment-water interface. It is therefore critical that the physical processes controlling transport 

in this zone are understood and properly described in environmental transport models. The 

collection of studies presented here advances understanding of interfacial solute and fine particle 

transport by providing novel observations of several physical processes that regulate interfacial 

dynamics, and strategies for how these processes can be incorporated into multi-scale transport 

modeling frameworks.  

6.1 Broader implications 

Our findings clarify the range of spatial and temporal scales over which specific processes 

regulate interfacial transport. We show that commonly-employed assumptions about hyporheic 

mixing are violated when turbulence enhances mixing at the sediment-water interface (SWI). 

Rapid mixing at the SWI occurred over only 1-2 grain diameters (4-8 cm) in our hyporheic 

injection experiments. However, the rate of solute depletion in this zone dominated overall solute 

exchange in the streambed at early times, both at the local scale (Chapter 2) and at the scales 

commonly used to assess whole-stream transport (Chapter 3). A model that did not account for 

the spatial variability of vertical mixing could not describe local or integrated exchange rates. 

Further, we show in Chapter 2 that the magnitude of mixing and the spatial extent of this zone 

are directly related to turbulent momentum stresses in the hyporheic zone. This finding provides 

a stronger physical basis for the choice of hyporheic transport model in the field, provided the 

region of enhanced mixing can be properly characterized. Ultimately, improved transport 
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modeling will yield more accurate estimates of local reaction kinetics, since transport models are 

used directly to infer reaction rates from observed reactive tracer concentration distributions 

[Harvey et al., 2013; Boano et al., 2014].  

We also show that the short-timescale concentration signature of turbulence varies in the 

hyporheic zone, both spatially and as a function of streamflow. This finding provides key 

information about the local hydrodynamic environment in the benthic and hyporheic zones. 

Given that turbulence is known to control benthic and hyporheic microbial metabolism [Battin et 

al., 2003a; Singer et al., 2010] and community structure [Battin et al., 2003b; Niederdorfer et al., 

2016], the profile of turbulent mixing in these zones is a key predictor of both biogeochemical 

transformation and microbial diversity in streams.   

Results from Chapter 4 demonstrate that the connection between hydrodynamic transport and 

microbial community structure is dynamic. The small-scale structure of benthic biofilms directly 

modifies retention of fine particles on the streambed. Since particle residence times can exceed 

one month [Flood and Ashbolt, 2000; Drummond et al., 2014c], there exists an overlap between 

the timescales of particle retention and of biofilm growth. By quantifying the feedback between 

growth and retention, we provide a physical basis for assessing the range of times that simplified 

assumptions are valid in current transport models (e.g. stationarity of the wait-time distribution), 

as well as extend their capability to longer times by describing how the underlying transport 

mechanism will change. Our results strongly suggest that valuable information will be gained in 
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field studies that incorporate measures of biofilm structure, streambed particle counts, and 

multiple experiments timed over different stages of biofilm growth. 

Sediment biomixing experiments (Chapter 5) show the implications of process heterogeneity. 

Burrow formation by Lumbriculus variegatus was frequent and highly localized to the SWI, with 

long intervals between burrowing events in deep sediments. This process spanned a broad range 

of spatial and temporal scales, resulting in rapid sediment mixing in some regions and 

unperturbed sediments in others. In the field, measurements of tracer movement at early times 

will likely not capture rare burrowing events, even though these events may be the most 

important for biogeochemical transformations or contaminant transport. In contrast, late-time 

measurements may show a fully mixed sediment layer, potentially leading to the improper 

conclusion that mixing is uniform across the bioactive zone. A predictive understanding of 

biomixing requires measurements that capture the full distribution transport events. We show in 

Chapter 5 that a combined experimental and modeling approach will aid in the measurement and 

modeling of this heterogeneous transport mechanism. Imaging experiments provide direct spatio-

temporal information about the biological events controlling sediment transport, which can then 

be used directly in a sediment mixing model. This approach therefore provides valuable 

information that can be used to construct improved analytical and numerical models for field 

application that account for the intrinsic heterogeneity underlying the governing transport 

process. 
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6.2 General challenges and future directions 

These four studies were motivated by the need for parsimonious models that predict solute 

and fine particle transport at the SWI. Numerous challenges remain before our specific findings 

can be incorporated into an integrated modeling framework. Hyporheic mixing experiments in 

Chapter 2 were performed in a system designed to yield high hyporheic turbulence (i.e., large 

sediments with open pores). Future experiments are needed to determine the range of sediment 

sizes, streambed geometries, and flow conditions over which turbulence will significantly impact 

hyporheic mass transport. Results from Chapters 2 and 3 suggest that enhanced mass transport is 

directly linked with the profile of turbulent stresses at and below the SWI. This provides a path 

forward to linking mechanistic models of hyporheic momentum transport and mass transport. 

Surface-subsurface flow coupling is nonlinear over a wide range of velocities and streambed 

permeabilities, and the complete, fundamental modeling of its nature remains a challenge [Blois 

et al., 2013]. Nonetheless, predictive scaling relations of momentum transport are beginning to 

emerge that are based on measurable properties of the system (e.g., streambed permeability, 

shear stress) [Ghisalberti, 2009; Manes et al., 2012; Voermans et al., 2017]. Results from 

Chapter 2 suggest that these scaling relations are generally applicable to hyporheic mass 

transport, but future experiments are needed to validate this claim. Once validated, a model that 

predicts the coupled effects of streambed geometry and fluid flow will substantially improve 

current upscaled (i.e., regional- and continental-scale) assessments of transport and 

transformation [Gomez‐Velez and Harvey, 2014].  



185 

 

 

We show in Chapter 3 that enhanced mixing at the SWI alters the downstream evolution of an 

injected solute pulse, which is the most commonly used method to assess integrated, reach-scale 

mass transport in the field [Haggerty et al., 2000; Payn et al., 2008; Hauer and Lamberti, 2011; 

Boano et al., 2014]. The interaction of several physically-based parameters—hyporheic velocity, 

the characteristic timescale for vertical hyporheic mixing, and distance from injection location—

determined the shape of measured breakthrough curves. More simulations are needed to explore 

the full range of these interactions. A phase plot of physical parameters would reveal if there are 

specific combinations that will guarantee the emergence of an asymptotic power-law interval in a 

measured BTC. Such information would be highly valuable for field practitioners, since it could 

inform the proper field and experimental conditions needed to correctly infer hyporheic 

residence time distributions. Results could then be validated in a natural stream whose 

measurable attributes fall within the range of our parametric analysis. Future work is also needed 

to identify an analytical modeling framework that parsimoniously describes integrated transport 

in coarse-sediment streams. Such a framework must capture the highly correlated motions and 

narrow separation of velocity scales inherent to these systems—two attributes that violate the 

underlying assumptions of most current hyporheic transport models.   

The flow-biofilm feedback identified in Chapter 4 highlights a general challenge for 

predicting solute and particle transport in fluvial systems: both transport processes and process 

interactions are active over a broad range of scales. Isolation of any individual process (or 

feedback) therefore does not provide complete information of the environmental controls of 

transport and transformation. This highlights the value of identifying the range of scales over 
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which specific processes are expected to control the system-scale behavior. Model results from 

Chapter 4 demonstrate that structural properties of benthic biofilms correlated with fine particle 

retention from minutes to months, which agrees with retention timescales observed in the field 

[Drummond et al., 2014c]. However, since surface coverage, mean height, and biofilm roughness 

were all found to co-vary with particle retention here, finer-scale observations are needed to 

identify the main control of retention (e.g., biofilm surface chemistry, morphology, and 

porosity). Controls on fine-particle deposition also remain unresolved at the scales of biofilm 

heterogeneity and turbulent flow-biofilm interactions, as current biofilm imaging technology 

cannot capture biofilm-particle interactions at turbulent timescales. We anticipate that 

computational fluid dynamics models, which can potentially describe flow-structure interactions 

down to viscous length scales, will provide the most direct insights into these interactions until 

improved high-speed/high-resolution imaging technology emerges.  

Results from Chapter 5 demonstrate that a key criterion of environmental transport models is 

that they capture the intrinsic process heterogeneity. Our in situ observations of sediment 

biomixing provide valuable insights into the structure of this heterogeneity by quantifying both 

the distribution of biological motions and the resulting sediment transport. However, advanced 

tools must be brought to bear to reduce this rich information to a parsimonious (and broadly 

applicable) description of sediment transport. The recent success of stochastic models for 

hydrodynamic transport suggests that this branch of mathematical physics may also provide 

analytically tractable descriptions of biological mixing [Aquino et al., In Review]. Again, such a 

framework will improve the physical basis for model upscaling by explicitly accounting for 
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process heterogeneity, as well as providing the physical basis for development of multi-scale, 

predictive reactive transport models. 
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